Skip to main content
Log in

One-Step Binding and Wrapping Fragmented Natural Microcrystalline Graphite via Phenolic Resin into Secondary Particles for High-Performance Lithium-Ion Battery Anode

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Research on graphite as anode material for lithium-ion batteries (LIBs) has been carried out for a long time. Natural microcrystalline graphite (MG) with low cost and eco-friendly properties is a promising anode for LIBs. However, the tiny and irregular MG would cause serious side reactions with electrolytes and reduce the efficiency of energy storage. Here, the alkali fusion acid leaching method is employed for the purification of MG. After removing impurities, the purified MG is bound and wrapped by phenolic resin pyrolytic carbon to form secondary particles (PCG). Benefiting from the formation of secondary particles with a carbon shell, PCG exhibits a high specific capacity of 354.3 mAh/g and outstanding rate performance (82.7% capacity retention at 2 C). Meanwhile, outstanding cycling stability is demonstrated, with 92.7% capacity retention after 500 loops at 2 C. This research cleverly employs phenolic resin pyrolytic carbon to bind and wrap fragmented MG into secondary particles by a one-step method for high-performance LIBs anode. Such a “one stone two birds” strategy is cost-effective, environmentally friendly, and simple to operate, which is highly valuable for practical applications and provides a reference for the optimization of other graphite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon, Nature 451, 652 (2008).

    Article  Google Scholar 

  2. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 18, 252 https://doi.org/10.1016/j.mattod.2014.10.040 (2015).

    Article  Google Scholar 

  3. D.P. Finegan, A. Quinn, D.S. Wragg, A.M. Colclasure, X. Lu, C. Tan, T.M.M. Heenan, R. Jervis, D.J.L. Brett, S. Das, T. Gao, D.A. Cogswell, M.Z. Bazant, M. Di Michiel, S. Checchia, P.R. Shearing, and K. Smith, Energy Environ. Sci. 13, 2570 https://doi.org/10.1039/d0ee01191f (2020).

    Article  Google Scholar 

  4. V. Dusastre, Nature 414, 331 (2001).

    Article  Google Scholar 

  5. C. Wang, H. Zhao, J. Wang, J. Wang, and P. Lv, Ionics 19, 221 https://doi.org/10.1007/s11581-012-0733-9 (2012).

    Article  Google Scholar 

  6. H. Zhang, Y. Yang, D. Ren, L. Wang, and X. He, Energy Storage Mater. 36, 147 https://doi.org/10.1016/j.ensm.2020.12.027 (2021).

    Article  Google Scholar 

  7. C.K.M. Endo, K. Nishimura, T. Fujino, and K. Miyashita, Carbon 38, 183 (2000).

    Article  Google Scholar 

  8. M. Salgado, J. Cent. South Univ. Technol. 8, 193 (2001).

    Article  Google Scholar 

  9. A.D. Jara, A. Betemariam, G. Woldetinsae, and J.Y. Kim, Int. J. Min. Sci. Technol. 29, 671 https://doi.org/10.1016/j.ijmst.2019.04.003 (2019).

    Article  Google Scholar 

  10. Y. Wei, Y. Jiang, N. Li, Z. Hu, X. He, and X. Ouyang, Adv. Appl. Ceram. 114, 423 https://doi.org/10.1179/1743676115y.0000000017 (2015).

    Article  Google Scholar 

  11. K. Shen, X. Cao, Z.H. Huang, W. Shen, and F. Kang, Carbon 177, 90 https://doi.org/10.1016/j.carbon.2021.02.055 (2021).

    Article  Google Scholar 

  12. L. Zou, F. Kang, X. Li, Y. Zheng, W. Shen, and J. Zhang, J. Phys. Chem. Solids 69, 1265 https://doi.org/10.1016/j.jpcs.2007.10.096 (2008).

    Article  Google Scholar 

  13. K.J. Kim, T.S. Lee, H.G. Kim, S.H. Lim, and S.M. Lee, Electrochim. Acta 135, 27 https://doi.org/10.1016/j.electacta.2014.04.171 (2014).

    Article  Google Scholar 

  14. L. Zhao, B. Ding, X.Y. Qin, Z. Wang, W. Lv, Y.B. He, Q.H. Yang, and F. Kang, Adv. Mater. https://doi.org/10.1002/adma.202106704 (2022).

    Article  Google Scholar 

  15. H. Li, Q. Feng, L. Ou, S. Long, M. Cui, and X. Weng, Int. J. Min. Sci. Technol. 23, 855 https://doi.org/10.1016/j.ijmst.2013.10.012 (2013).

    Article  Google Scholar 

  16. H. Wang, Q. Feng, X. Tang, and K. Liu, Sep. Sci. Technol. 51, 2465 https://doi.org/10.1080/01496395.2016.1206933 (2016).

    Article  Google Scholar 

  17. S. Yang, S. Zhang, W. Dong, and Y. Xia, Mater. Res. Expr. https://doi.org/10.1088/2053-1591/ac513f (2022).

    Article  Google Scholar 

  18. C. Wang, G. Gai, and Y. Yang, Jom 70, 1392 https://doi.org/10.1007/s11837-018-2784-5 (2018).

    Article  Google Scholar 

  19. M. Wissler, J. Power Sour. 156, 142 https://doi.org/10.1016/j.jpowsour.2006.02.064 (2006).

    Article  Google Scholar 

  20. X.J.L.E. Forssberg, Miner. Eng. 15, 755 (2002).

    Article  Google Scholar 

  21. K. Shen, Z.-H. Huang, J. Yang, G. Yang, W. Shen, and F. Kang, Carbon 58, 238 https://doi.org/10.1016/j.carbon.2013.02.025 (2013).

    Article  Google Scholar 

  22. H. Wang, Q. Feng, K. Liu, K. Zuo, and X. Tang, Sep. Sci. Technol. 53, 982 https://doi.org/10.1080/01496395.2017.1405986 (2017).

    Article  Google Scholar 

  23. H. Wang, Q. Feng, and K. Liu, Appl. Clay Sci. 132–133, 273 https://doi.org/10.1016/j.clay.2016.06.013 (2016).

    Article  Google Scholar 

  24. C. Ma, B. Wang, T. Zhang, F. Jin, Y. Lu, Y. Chen, Z. Ren, Z. Jia, C. Zheng, J. Fang, J. Li, and D. Wang, CrystEngComm 24, 3189 https://doi.org/10.1039/d1ce01588e (2022).

    Article  Google Scholar 

  25. W. Xie, Z. Wang, J. Kuang, H. Xu, S. Yi, Y. Deng, T. Cao, and Z. Guo, Int. J. Miner. Process. 155, 45 https://doi.org/10.1016/j.minpro.2016.08.002 (2016).

    Article  Google Scholar 

  26. R. Balgis, S. Sago, G.M. Anilkumar, T. Ogi, and K. Okuyama, ACS Appl. Mater. Interfaces. 5, 11944 https://doi.org/10.1021/am403695u (2013).

    Article  Google Scholar 

  27. E.C. Cho, C.W. Jian, C.Z. Lu, J.H. Huang, T.H. Hsieh, N.J. Wu, K.C. Lee, S.C. Hsu, and H.C. Weng, Polymers. https://doi.org/10.3390/polym14030575 (2022).

    Article  Google Scholar 

  28. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 https://doi.org/10.1002/adma.201001068 (2010).

    Article  Google Scholar 

  29. H. Zhang, W. Zhang, and F. Huang, Chem. Eng. J. https://doi.org/10.1016/j.cej.2022.134503 (2022).

    Article  Google Scholar 

  30. C. Xue, Y. Liu, J. Zhao, X. Li, J. Zhang, and J. Zhang, Solid State Ionics. https://doi.org/10.1016/j.ssi.2022.115854 (2022).

    Article  Google Scholar 

  31. H. Xu, X. Yin, M. Li, F. Ye, M. Han, Z. Hou, X. Li, L. Zhang, and L. Cheng, Carbon 132, 343 https://doi.org/10.1016/j.carbon.2018.02.040 (2018).

    Article  Google Scholar 

  32. R. Marthi, H. Asgar, G. Gadikota, and Y.R. Smith, ACS Appl. Mater. Interfaces. 13, 8361 https://doi.org/10.1021/acsami.0c20691 (2021).

    Article  Google Scholar 

  33. G.R. Berdiyorov, Appl. Surf. Sci. 359, 153 https://doi.org/10.1016/j.apsusc.2015.10.050 (2015).

    Article  Google Scholar 

  34. Y. Wu, T. Ouyang, H. Yang, F. Wang, and M.S. Balogun, Inorgan. Chem. Commun. https://doi.org/10.1016/j.inoche.2021.108611 (2021).

    Article  Google Scholar 

  35. R. Deng, F. Chu, H. Yu, F. Kwofie, M. Qian, Y. Zhou, and F. Wu, Fuel Process. Technol. https://doi.org/10.1016/j.fuproc.2021.107100 (2022).

    Article  Google Scholar 

  36. M.A. Cabañero, M. Hagen, and E. Quiroga González, Electrochim. Acta. https://doi.org/10.1016/j.electacta.2020.137487 (2021).

    Article  Google Scholar 

  37. F. Wang, J. Graetz, S. Moreno, C. Ma, L. Wu, V. Volkov, and Y. Zhu, ACS Nano 5, 1190 (2011).

    Article  Google Scholar 

  38. W. Schülke, K.J. Gabriel, A. Berthold, and H. Schulte-Schrepping, Solid State Commun. 79, 657 (1991).

    Article  Google Scholar 

  39. T.H. Kim, E.K. Jeon, Y. Ko, B.Y. Jang, B.S. Kim, and H.K. Song, J. Mater. Chem. A 2, 7600 https://doi.org/10.1039/c3ta15360f (2014).

    Article  Google Scholar 

  40. F. Li, X. Wang, W. He, X. Xu, Z. Liu, J. Shen, Y. Hu, Z. Chen, and J. Liu, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.162893 (2022).

    Article  Google Scholar 

  41. M.I. Atsushi Funabiki, and T.A.Z. Ogumi, Electrochem. Soc. 146, 2443 (1999).

    Article  Google Scholar 

  42. M. Lu, H. Cheng, and Y. Yang, Electrochim. Acta 53, 3539 https://doi.org/10.1016/j.electacta.2007.09.062 (2008).

    Article  Google Scholar 

  43. Y. Zhang, S. Li, L. Cheng, Y. Li, X. Ren, P. Zhang, L. Sun, and H.Y. Yang, J. Mater. Chem. A 9, 3388 https://doi.org/10.1039/d0ta11204f (2021).

    Article  Google Scholar 

  44. M. Wang, J. Wang, J. Xiao, N. Ren, B. Pan, C.S. Chen, and C.H. Chen, ACS Appl. Mater. Interfaces. 14, 16279 https://doi.org/10.1021/acsami.2c02169 (2022).

    Article  Google Scholar 

  45. H. Han, H. Park, K.C. Kil, Y. Jeon, Y. Ko, C. Lee, M. Kim, C.-W. Cho, K. Kim, U. Paik, and T. Song, Electrochim. Acta 166, 367 https://doi.org/10.1016/j.electacta.2015.03.037 (2015).

    Article  Google Scholar 

  46. X. Yang, C. Zhan, X. Ren, C. Wang, L. Wei, Q. Yu, D. Xu, D. Nan, R. Lv, W. Shen, F. Kang, and Z.-H. Huang, J. Solid State Chem. https://doi.org/10.1016/j.jssc.2021.122500 (2021).

    Article  Google Scholar 

  47. X. Gong, Y. Zheng, J. Zheng, S. Cao, H. Wen, B. Lin, and Y. Sun, ChemElectroChem 7, 1465 https://doi.org/10.1002/celc.201902098 (2020).

    Article  Google Scholar 

  48. C. Ge, Z. Fan, J. Zhang, Y. Qiao, J. Wang, and L. Ling, RSC Adv. 8, 34682 https://doi.org/10.1039/c8ra07170e (2018).

    Article  Google Scholar 

  49. X. Liao, Z. Ding, and Z. Yin, Ionics 26, 5367 https://doi.org/10.1007/s11581-020-03577-7 (2020).

    Article  Google Scholar 

  50. H.P.T. Sasanka Hewathilake, N. Karunarathne, A. Wijayasinghe, N.W.B. Balasooriya, and A.K. Arof, Ionics 23, 1417 https://doi.org/10.1007/s11581-016-1953-1 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Y.M. and Y.Z. contributed equally to this work. This work was supported by National Key Technology R&D Program (2021YFC2902903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 831 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zheng, Y., Xu, M. et al. One-Step Binding and Wrapping Fragmented Natural Microcrystalline Graphite via Phenolic Resin into Secondary Particles for High-Performance Lithium-Ion Battery Anode. JOM 75, 5321–5330 (2023). https://doi.org/10.1007/s11837-023-05992-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05992-3

Navigation