Skip to main content
Log in

Exploring a Sustainable Approach to Antioxidant Potential of Iron Oxide Nanoparticles Synthesized Using Citrus sinensis Peel Extract

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The objective of this research paper is to investigate a simple, effective, and environmentally-friendly technique for synthesizing Fe2O3 nanoparticles using aqueous-based extract derived from the peels of Citrus sinensis fruit. The primary goal of this method is to produce Fe2O3 nanoparticles with potential antioxidant properties. The biological reducing and capping agents used for this process are the phytochemicals and bioactive compounds present in the aqueous extract of Citrus sinensis fruit peel. Ferrous sulfate was used as the precursor for the synthesis of the Fe2O3 nanoparticles, which were analyzed and characterized using XRD, SEM, EDX, FT-IR, TGA, and zeta potential. According to the findings, the Fe2O3 nanoparticles exhibited a crystalline and spherical structure, and their average size was 22 nm, and a value of – 56.5 mV. TGA spectra determined a weight loss of 36.61% in the nanoparticles in a temperature range of 200–600 °C, because of the thermal decomposition of biomolecules. The strength of the nanoparticles' antioxidant properties was evaluated using a DPPH and ABTS assay and determined to be robust. The maximum scavenging activity of 88–90% was observed at higher concentrations (100 µg/mL) of the nanoparticles. The findings of this research suggest that this eco-friendly synthesis of Fe2O3 nanoparticles from Citrus sinensis fruit peel extract is an efficient method that could potentially have a broad range of biomedical applications due to its antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are included within the article.

References

  1. H. Agarwal, S.V. Kumar, and S. Rajeshkumar, Res-Eff. Technol. 3(4), 406 (2017).

    Google Scholar 

  2. J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, and Q. Li, Chem. Soc. Rev. 44(17), 6330 (2015).

    Article  Google Scholar 

  3. M.M. Chikkanna, S.E. Neelagund, K.K. Rajashekarappa, and S.N. Appl, Sci. 1(1), 1 (2019).

    Google Scholar 

  4. P. Rajiv, S. Rajeshwari, and R. Venckatesh, Spectrochim Acta A Mol. Biomol Spectrosc. 112, 384 (2013).

    Article  Google Scholar 

  5. G. Jagathesan and P. Rajiv, Biocatal. Agric. Biotechnol. 13, 90 (2018).

    Article  Google Scholar 

  6. M.A. Alghuthaymi, C. Rajkuberan, T. Santhiya, O. Krejcar, K. Kuča, R. Periakaruppan, and S. Prabukumar, Plants 10(11), 2370 (2021).

    Article  Google Scholar 

  7. B.T. Sone, E. Manikandan, A. Gurib-Fakim, and M. Maaza, Green Chem. Lett. Rev. 9(2), 8590 (2016).

    Article  Google Scholar 

  8. V. Jacob and P. Rajiv, Asian J. Pharm Clin. Res. 12(1), 200 (2019).

    Article  Google Scholar 

  9. G.Ş. Karatoprak, G. Aydin, B. Altinsoy, C. Altinkaynak, I. Koşar M Ocsoy, Enzyme Microb.Technol. 97, 21 (2017).

  10. O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, and P.A. Luque, J. Mol. Struct. 1147, 1 (2017).

    Article  Google Scholar 

  11. K. McNamara and S.A. Tofail, Adv. Phys. X2(1), 54 (2017).

    Google Scholar 

  12. S.K. Kale, G.V. Parishwad, and A.S.H.A.S. Patil, ES Food Agrofor. 3, 17 (2021).

    Google Scholar 

  13. A. Saravanan, P.S. Kumar, S. Karishma, D.V.N. Vo, S. Jeevanantham, P.R. Yaashikaa, and C.S. George, Chemosphere 264, 128580 (2021).

    Article  Google Scholar 

  14. T.U.D. Thi, T.T. Nguyen, Y.D. Thi, K.H.T. Thi, B.T. Phan, and K.N. Pham, RSC Adv. 10(40), 23899 (2020).

    Article  Google Scholar 

  15. M. Yusefi, K. Shameli, R.R. Ali, S.W. Pang, and S.Y. Teow, J. Mol. Struct. 1204, 127539 (2020).

    Article  Google Scholar 

  16. N. Beheshtkhoo, M.A.J. Kouhbanani, A. Savardashtaki, A.M. Amani, and S. Taghizadeh, Appl. Phys. A 124(5), 1 (2018).

    Article  Google Scholar 

  17. P. Karpagavinayagam and C. Vedhi, Vacuum 160, 286 (2019).

    Article  Google Scholar 

  18. A. Saravanakumar, M.M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, and H.T. Jang, Artif. Cells Nano. Med Biotechnol. 45(6), 1165 (2017).

    Article  Google Scholar 

  19. M. Jamzad and B.M. Kamari, J. Nanostruct. Chem. 10(3), 193 (2020).

    Article  Google Scholar 

  20. S. Lohrasbi, M.A.J. Kouhbanani, N. Beheshtkhoo, Y. Ghasemi, A.M. Amani, and S. Taghizadeh, Bio Nano Sci. 9(2), 317 (2019).

    Google Scholar 

  21. P. Rajiv, B. Bavadharani, M.N. Kumar, and P. Vanathi, Biocatal. Agric. B iotechnol. 12, 45 (2017).

    Article  Google Scholar 

  22. A. Bouafia and S.E. Laouini, Mater. Lett. 265, 127364 (2020).

    Article  Google Scholar 

  23. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, and D. Zhu, J. Colloid Interface Sci. 349(1), 293 (2010).

    Article  Google Scholar 

  24. K. Singh, D.S. Chopra, D. Singh, and N. Singh, Arab. J. Chem. 13(12), 9034 (2020).

    Article  Google Scholar 

  25. A.R. Deshmukh, A. Gupta, and B.S. Kim, Biomed. Res. Int. 2019, 1714358 (2019).

    Article  Google Scholar 

  26. A.U. Mirza, A. Kareem, S.A. Nami, M.S. Khan, S. Rehman, S.A. Bhat, A. Mohammad, and N. Nishat, J. Photochem. Photobiol. B Biol. 185, 262 (2018).

    Article  Google Scholar 

  27. W. Muzafar, T. Kanwal, K. Rehman, S. Perveen, T. Jabri, F. Qamar, S. Faizi, and M.R. Shah, J. Mol. Struct. 1269, 13382 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Deanship of Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization validation, supervision and writing—review and editing, data curation, formal analysis by MMA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mosleh Mohammad Abomughaid.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abomughaid, M.M. Exploring a Sustainable Approach to Antioxidant Potential of Iron Oxide Nanoparticles Synthesized Using Citrus sinensis Peel Extract. JOM 75, 5388–5393 (2023). https://doi.org/10.1007/s11837-023-05977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05977-2

Navigation