Skip to main content
Log in

Sintering Behavior and Activation Energy of Fe2O3 Nanoparticles: A Molecular Dynamics Research

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, molecular dynamics was used to simulate the sintering process of nanoparticle Fe2O3 at 1423 K, 1523 K, 1623 K and 1723 K. The crystal connection evolution process between the nanoparticles was extracted, and the activation energy under different sintering mechanisms was calculated using the model function combined with the Arrhenius formula. The results show that as the sintering temperature rises, so does the crystal connection speed and that in the early stages of sintering the atomic diffusion motion becomes progressively more intense with increasing temperature, but that after the temperature rises to 1623 K, the motion no longer changes significantly. The calculated activation energy for each diffusion mechanism is 134.04 kJ mol−1 for viscous flow or plastic flow, 168.74 kJ mol−1 for evaporation-condensation, 267.48 kJ mol−1 for lattice (volume) diffusion, 285.03 kJ mol−1 for grain boundary diffusion and 367.45 kJ mol−1 for surface diffusion. The calculated findings reveal that the mechanism function fits well, and particle migration in the early densification process of sintering is more dependent on surface diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Satpathy, G.K. Chandra, K. Elayaraja, D.R. Mahapatra, A. Subramania, Z. Guo, S. Umapathy, and E. Manikandan, Eng. Sci. 20, 341 (2022).

    Google Scholar 

  2. Z. Zhang, Y. Zhao, Z. Li, L. Zhang, Z. Liu, Z. Long, Y. Li, Y. Liu, R. Fan, K. Sun, and Z. Zhang, Adv. Compos. Hybrid Mater. 5, 513 (2022).

    Google Scholar 

  3. J. Wang, C. Yang, L. Zhang, C. Cui, X. Zeng, and J. Chen, Adv. Compos. Hybrid Mater. 5, 2936 (2022).

    Google Scholar 

  4. M. Liu, Y. Ding, L. Wang, Y. Wang, and X. Wang, Adv. Compos. Hybrid Mater. 5, 461 (2022).

    Google Scholar 

  5. R. Ma, B. Cui, D. Hu, S.M. El-Bahy, Y. Wang, I.H.E. Azab, A.Y. Elnaggar, H. Gu, G.A.M. Mersal, M. Huang, and V. Murugadoss, Adv. Compos. Hybrid Mater. 5, 1477 (2022).

    Google Scholar 

  6. B. Cheng, and A.H.W. Ngan, Comput. Mater. Sci. 74, 1 (2013).

    Google Scholar 

  7. S. Yang, W. Kim, and M. Cho, Int. J. Eng. Sci. 123, 1 (2018).

    Google Scholar 

  8. N. Matsubara, S. Munetoh, and O. Furukimi, MRS Adv. 1, 2167 (2016).

    Google Scholar 

  9. H. Wu, Y. Zhong, Y. Tang, Y. Huang, G. Liu, W. Sun, P. Xie, D. Pan, C. Liu, and Z. Guo, Adv. Compos. Hybrid Mater. 5, 419 (2022).

    Google Scholar 

  10. P. Song, and D. Wen, J. Nanopart. Res. 12, 823 (2010).

    Google Scholar 

  11. R. German, Sintering: From Empirical Observations to Scientific Principles (Butterworth-Heinemann, 2014).

    Google Scholar 

  12. Z.Z. Fang, and H. Wang, Int. Mater. Rev. 53, 326 (2008).

    Google Scholar 

  13. S. Ma, K. Li, J. Zhang, C. Jiang, M. Sun, H. Li, Z. Wang, and Z. Bi, JOM 73, 1637 (2021).

    Google Scholar 

  14. Z. Liu, Q. Cheng, Y. Wang, K. Li, R. Wang, and J. Zhang, Powder Technol. 384, 141 (2021).

    Google Scholar 

  15. L. Li, M. He, Y. Feng, H. Wei, X. You, H. Yu, Q. Wang, and J. Wang, Adv. Compos. Hybrid Mater. 4, 725 (2021).

    Google Scholar 

  16. M. I. Abdjan, N. S. Aminah, A. N. Kristanti, I. Siswanto, M. A. Saputra, and Y. Takaya, Eng. Sci. (2022).

  17. L.J. Lewis, P. Deltour, P. Jensen, and J.-L. Barrat, MRS Online Proc. Libr. OPL 492, 293 (1997).

    Google Scholar 

  18. J.S. Raut, R.B. Bhagat, and K.A. Fichthorn, Nanostruct. Mater. 10, 837 (1998).

    Google Scholar 

  19. J.-H. Shim, B.-J. Lee, and Y.W. Cho, Surf. Sci. 512, 262 (2002).

    Google Scholar 

  20. M.R. Zachariah, and M.J. Carrier, J. Aerosol Sci. 30, 1139 (1999).

    Google Scholar 

  21. L. Ding, R.L. Davidchack, and J. Pan, Comput. Mater. Sci. 45, 247 (2009).

    Google Scholar 

  22. T. Hawa, and M.R. Zachariah, J. Aerosol Sci. 37, 1 (2006).

    Google Scholar 

  23. A. Moitra, S. Kim, S.-G. Kim, S.J. Park, R.M. German, and M.F. Horstemeyer, Acta Mater. 58, 3939 (2010).

    Google Scholar 

  24. V.N. Koparde, and P.T. Cummings, ACS Nano 2, 1620 (2008).

    Google Scholar 

  25. N.H. Nguyen, R. Henning, and J.Z. Wen, J. Nanopart. Res. 13, 803 (2011).

    Google Scholar 

  26. X. Liu, J. Feng, Q. Zhou, and P. Chen, Explos. Shock Waves 40, 102 (2020).

    Google Scholar 

  27. L. Yang, Y. Gan, Y. Zhang, and J.K. Chen, Appl. Phys. A 106, 725 (2012).

    Google Scholar 

  28. Y. Zhang, L. Wu, H. El-Mounayri, K. Brand, and J. Zhang, Procedia Manuf. 1, 296 (2015).

    Google Scholar 

  29. M. Wu, L. Chang, Y. Cui, X. Chen, and X. Qu, Powder Metall. 18, 775 (2013).

    Google Scholar 

  30. B.B. Panigrahi, Mater. Sci. Eng. A 460–461, 7 (2007).

    Google Scholar 

  31. A. Erlebach, H.-D. Kurland, J. Grabow, F.A. Müller, and M. Sierka, Nanoscale 7, 2960 (2015).

    Google Scholar 

  32. A.-S. Teja, and P.-Y. Koh, Prog. Cryst. Growth Charact. Mater. 55, 22 (2009).

    Google Scholar 

  33. P. Xie, Z. Shi, M. Feng, K. Sun, Y. Liu, K. Yan, C. Liu, T.A.A. Moussa, M. Huang, S. Meng, G. Liang, H. Hou, R. Fan, and Z. Guo, Adv. Compos. Hybrid Mater. 5, 679 (2022).

    Google Scholar 

  34. Y. Xue, D. Zhu, J. Pan, Z. Guo, G. Li, L. Pan, and X. Huang, JOM 74, 1807 (2022).

    Google Scholar 

  35. Q. Cheng, Y. Wang, J. Zhang, A.N. Conejo, and Z. Liu, Chem. Eng. Sci. 262, 118038 (2022).

    Google Scholar 

  36. Z. Liu, Q. Cheng, Y. Wang, A. Zheng, K. Li, and J. Zhang, Chem. Phys. Lett. 760, 137901 (2020).

    Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Google Scholar 

  38. Z. Liu, Q. Cheng, K. Li, Y. Wang, and J. Zhang, Powder Technol. 367, 97 (2020).

    Google Scholar 

  39. Y. Wang, J. Schenk, J. Zhang, Z. Liu, J. Wang, L. Niu, and Q. Cheng, Powder Technol. 362, 517 (2020).

    Google Scholar 

  40. X. Michalet, Phys. Rev. E 82, 041914 (2010).

    MathSciNet  Google Scholar 

  41. Z. Liu, Q. Cheng, Y. Wang, Y. Li, and J. Zhang, Chem. Eng. Sci. 218, 115583 (2020).

    Google Scholar 

  42. R.M. German, and S.J. Park, Handbook of Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals (Wiley, 2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (52204335), the Beijing New-star Plan of Science and Technology (Z211100002121115), the Central Universities Foundation of China (06500170), the Guangdong Basic & Applied Basic Research Fund Joint Regional Funds-Youth Foundation Projects (2020A1515111008) and the China Postdoctoral Science Foundation (2021M690369).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjian Liu or Yaozu Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Liu, Z., Zhang, J. et al. Sintering Behavior and Activation Energy of Fe2O3 Nanoparticles: A Molecular Dynamics Research. JOM 75, 3827–3835 (2023). https://doi.org/10.1007/s11837-023-05969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05969-2

Navigation