Skip to main content
Log in

Microstructure Evolution and Tensile Properties of Forged Mg-Zn-Zr Alloys: Effects of Zr Microalloying

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mg-Zn-Zr wrought alloys have been widely developed for lightweight applications. Zr microalloying contributes to remarkable grain refinement during solidification and bimodal microstructure via forging. To obtain an optimum Zr content for a balance between cost and mechanical property, it is necessary to understand the influence of varied Zr addition levels on the microstructure and mechanical property of the final forged product. In the present study, two levels of Zr addition (nominally 0.40 wt.% and 0.60 wt.%) were added to a Mg-3 wt.% Zn alloy to investigate the effect of varied Zr contents on the microstructures under as-cast, as-forged and tensile-strained conditions, as well as the uniaxial tensile properties of the as-forged alloy. The as-forged microstructures comprise fine dynamic recrystallized (DRXed) grains and coarse deformed (unDRXed) domains, which become more refined with the Zr content increasing from ~ 0.43 wt.% to ~ 0.67 wt.%. The microstructural change caused by the increased Zr addition has minor impact on 0.2% proof stress but remarkably improves both uniform and post-uniform elongations, for which the underlying mechanisms have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to obtain these results can be shared upon reasonable request to the corresponding author.

References

  1. E.F. Emley, Principles of Magnesium Technology (Pergamon Press, Oxford, 1966).

    Google Scholar 

  2. Y. Lee, A. Dahle, and D. StJohn, Metall. Mater. Trans. A 31, 2895 (2000).

    Article  Google Scholar 

  3. Y. Tamura, N. Kono, T. Motegi, and E. Sato, Keikinzoku 47, 679 (1997).

    Google Scholar 

  4. M. Sun, M.A. Easton, D.H. StJohn, G. Wu, T.B. Abbott, and W. Ding, Adv. Eng. Mater. 15, 373 (2013).

    Article  Google Scholar 

  5. H.E. Friedrich, and B.L. Mordike, Magnesium technology (Springer, 2006).

    Google Scholar 

  6. A.I.H. Committee, ASM Int. 2, 1143 (1992).

    Google Scholar 

  7. X. Lin, L. Tan, Q. Zhang, K. Yang, Z. Hu, J. Qiu, and Y. Cai, Acta Biomater. 9, 8631 (2013).

    Article  Google Scholar 

  8. S. Karparvarfard, S.K. Shaha, S.B. Behravesh, H. Jahed, and B.W. Williams, J. Mater. Sci. Technol. 33, 907 (2017).

    Article  Google Scholar 

  9. M. Alvarez-Leal, A. Orozco-Caballero, F. Carreño, and O.A. Ruano, Mater. Sci. Eng. A 710, 240 (2018).

    Article  Google Scholar 

  10. G. Govind, K. Nair, M. Mittal, R. Sikand, and A. Gupta, Mater. Sci. Technol. 24, 399 (2008).

    Article  Google Scholar 

  11. M. Carsí, F. Carreño, and O.A. Ruano, Materials science forum (Trans Tech Publication, 2018), pp2325–2330.

    Google Scholar 

  12. A. Malik, Y. Wang, F. Nazeer, M.A. Khan, M. Sajid, S. Jamal, and W. Mingjun, J. Alloy. Compd. 858, 157740 (2021).

    Article  Google Scholar 

  13. S. Karparvarfard, S. Shaha, S. Behravesh, H. Jahed, and B. Williams, MATEC web of conferences (EDP Sciences, 2018), p06009.

    Google Scholar 

  14. G. Popescu, P. Moldovan, D. Bojin, and W.H. Sillekens, Univ. Politeh. Buchar. Sci. Bull. Ser. B Chem. Mater. Sci. 71, 85 (2009).

    Google Scholar 

  15. A. Dziubińska, A. Gontarz, M. Dziubiński, and M. Barszcz, Adv. Sci. Technol. Res. J. 10, 31 (2016).

    Article  Google Scholar 

  16. B. Nagasivamuni, G. Wang, D.H. StJohn, and M.S. Dargusch, J. Cryst. Growth 512, 20 (2019).

    Article  Google Scholar 

  17. X. Tong, G. Wu, M.A. Easton, M. Sun, D.H. StJohn, R. Jiang, and F. Qi, Scr. Mater. 215, 114700 (2022).

    Article  Google Scholar 

  18. M. Qian, L. Zheng, D. Graham, M. Frost, and D. StJohn, J. Light Met. 1, 157–165 (2001).

    Article  Google Scholar 

  19. P. Sasha, and S. Viswanathan, Trans. Am. Found. Soc. 119, 469 (2011).

    Google Scholar 

  20. M. Qian, Z. Hildebrand, and D. StJohn, Metall. Mater. Trans. A 40, 2470 (2009).

    Article  Google Scholar 

  21. M. Qian, D.H. StJohn, and M.T. Frost, Materials science forum (Trans Tech Publication, Zurich-Uetikon, 2003), pp593–598.

    Google Scholar 

  22. B. Mordike, Mater. Sci. Eng. A 324, 103 (2002).

    Article  Google Scholar 

  23. M. Qian, D. StJohn, and M. Frost, Scr. Mater. 46, 649 (2002).

    Article  Google Scholar 

  24. M. Qian, and D.H. StJohn, Int. J. Cast Met. Res. 22, 256 (2009).

    Article  Google Scholar 

  25. J. Robson, and C. Paa-Rai, Acta Mater. 95, 10 (2015).

    Article  Google Scholar 

  26. J. You, Y. Huang, C. Liu, H. Zhan, L. Huang, and G. Zeng, Materials 13, 2348 (2020).

    Article  Google Scholar 

  27. A. Hadadzadeh, F. Mokdad, B.S. Amirkhiz, M. Wells, B.W. Williams, and D.L. Chen, Mater. Sci. Eng. A 724, 421 (2018).

    Article  Google Scholar 

  28. K. Huang, and R.E. Logé, Mater. Des. 111, 548 (2016).

    Article  Google Scholar 

  29. T. Bhattacharjee, T. Sasaki, B. Suh, T. Nakata, S. Kamado, N. Kim, and K. Hono, Magnesium technology 2015 (Springer, 2015), pp209–213.

    Book  Google Scholar 

  30. A. Hadadzadeh, F. Mokdad, M. Wells, and D. Chen, Mater. Sci. Eng. A 709, 285 (2018).

    Article  Google Scholar 

  31. K. Oh-Ishi, C. Mendis, T. Homma, S. Kamado, T. Ohkubo, and K. Hono, Acta Mater. 57, 5593 (2009).

    Article  Google Scholar 

  32. T. Bhattacharjee, T. Nakata, T. Sasaki, S. Kamado, and K. Hono, Scr. Mater. 90, 37 (2014).

    Article  Google Scholar 

  33. J. Da Silva Rodrigues, L.M. Antonini, A.A. Da Cunha Bastos, J. Zhou, and C. De Fraga Malfatti, Surf. Coat. Technol. 410, 126983 (2021).

    Article  Google Scholar 

  34. J.F. Chinella, CCDC army research laboratory Aberdeen proving ground United States (2020)

  35. F. Bachmann, R. Hielscher, and H. Schaeben, Solid state phenomena (Trans Tech Publication, 2010), pp63–68.

    Google Scholar 

  36. J. Li, J. Barrirero, G. Sha, H. Aboulfadl, F. Mücklich, and P. Schumacher, Acta Mater. 108, 207 (2016).

    Article  Google Scholar 

  37. W. Wang, D. Wu, R. Chen, Y. Qi, H. Ye, and Z. Yang, J. Alloy. Compd. 832, 155016 (2020).

    Article  Google Scholar 

  38. K. Guan, B. Li, Q. Yang, D. Zhang, X. Zhang, J. Zhang, L. Zhao, X. Liu, and J. Meng, Mater. Charact. 145, 329–336 (2018).

    Article  Google Scholar 

  39. X.-L. Nan, H.-Y. Wang, L. Zhang, J.-B. Li, and Q.-C. Jiang, Scr. Mater. 67, 443 (2012).

    Article  Google Scholar 

  40. D. Sun, and C. Chang, Mater. Sci. Eng. A 603, 30 (2014).

    Article  Google Scholar 

  41. H. Kim, J.-H. Lee, C. Lee, W. Bang, S. Ahn, and Y. Chang, Mater. Sci. Eng. A 558, 431 (2012).

    Article  Google Scholar 

  42. M. Vaughan, W. Nasim, E. Dogan, J. Herrington, G. Proust, A. Benzerga, and I. Karaman, Acta Mater. 168, 448 (2019).

    Article  Google Scholar 

  43. J. Koike, Y. Sato, D. Ando, Materials transactions, 0811070603–0811070603 (2008)

  44. D. Ando, J. Koike, and Y. Sutou, Mater. Sci. Eng. A 600, 145 (2014).

    Article  Google Scholar 

  45. M. Barnett, Mater. Sci. Eng. A 464, 8 (2007).

    Article  Google Scholar 

  46. J. Koike, Metall. Mater. Trans. A. 36, 1689 (2005).

    Article  Google Scholar 

  47. A. Jain, O. Duygulu, D. Brown, C. Tomé, and S. Agnew, Mater. Sci. Eng. A 486, 545 (2008).

    Article  Google Scholar 

  48. P. Cizek, and M. Barnett, Scr. Mater. 59, 959 (2008).

    Article  Google Scholar 

  49. M. Hämäläinen, and K. Zeng, Calphad 22, 375 (1998).

    Article  Google Scholar 

  50. M.A. Kumar, and I.J. Beyerlein, Mater. Sci. Eng. A 771, 138644 (2020).

    Article  Google Scholar 

  51. M. Tsai, and C. Chang, Mater. Sci. Technol. 29, 759 (2013).

    Article  Google Scholar 

  52. B. Li, S.P. Joshi, O. Almagri, Q. Ma, K. Ramesh, and T. Mukai, Acta Mater. 60, 1818 (2012).

    Article  Google Scholar 

  53. H. Asgari, A. Odeshi, J. Szpunar, L. Zeng, and E. Olsson, Mater. Charact. 106, 359 (2015).

    Article  Google Scholar 

  54. T. Homma, C. Mendis, K. Hono, and S. Kamado, Mater. Sci. Eng., A 527, 2356 (2010).

    Article  Google Scholar 

  55. A. Chapuis, and J.H. Driver, Acta Mater. 59, 1986 (2011).

    Article  Google Scholar 

  56. B. Wang, D. Xu, L. Sheng, E. Han, and J. Sun, J. Mater. Sci. Technol. 35, 2423 (2019).

    Article  Google Scholar 

  57. C. Xu, G. Fan, T. Nakata, X. Liang, Y. Chi, X. Qiao, G. Cao, T. Zhang, M. Huang, and K. Miao, Metall. Mater. Trans. A. 49, 1931 (2018).

    Article  Google Scholar 

  58. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Mater. Sci. Eng. A 488, 214 (2008).

    Article  Google Scholar 

  59. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, and J. Bohlen, Scr. Mater. 65, 424 (2011).

    Article  Google Scholar 

  60. H. Fan, S. Aubry, A. Arsenlis, and J.A. El-Awady, Scr. Mater. 112, 50 (2016).

    Article  Google Scholar 

  61. M. Jiang, C. Xu, T. Nakata, H. Yan, R. Chen, and S. Kamado, Mater. Sci. Eng. A 678, 329 (2016).

    Article  Google Scholar 

  62. H. Watanabe, J. Mater. Eng. Perform. 22, 3450 (2013).

    Article  Google Scholar 

  63. B. Shi, R. Chen, W. Ke, and J. Magnes, Alloys 1, 210 (2013).

    Article  Google Scholar 

  64. Q. Yang, and A. Ghosh, Acta Mater. 54, 5159 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the experimental assistance from Mr. Jinlong Zhu from GM China Science Lab. G.Z. acknowledges the funding from National Natural Science Foundation of China (51904352), and Scientific Research Foundation of Hunan Provincial Education Department, China (22A0004). W. Sun is grateful for the Fundamental Research Funds for the Central Universities of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyi Zhan or Lixin Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 476 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Yao, H., Sun, W. et al. Microstructure Evolution and Tensile Properties of Forged Mg-Zn-Zr Alloys: Effects of Zr Microalloying. JOM 75, 3041–3054 (2023). https://doi.org/10.1007/s11837-023-05902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05902-7

Navigation