Skip to main content
Log in

Influence of Hot Extrusion on the Microstructure, Bio-Corrosion and SCC Resistance of a Cast Mg-2.5Gd-0.5Zr Alloy

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Effects of hot extrusion on the microstructure, shear strength, bio-corrosion and stress corrosion cracking (SCC) behavior of the as-cast Mg-2.5Gd-0.5Zr alloy were studied. The 150-µm coarse-grain size of the as-cast material was refined to a fine recrystallized grain structure having a grain size of 3 µm. Compared with the as-cast condition, the extruded alloy exhibited higher strength and lower ductility after slow strain rate shear testing in the air and inside the corrosive solution. The higher strength stemmed from grain boundary strengthening, while lower ductility was explained by a more difficult dislocation movement inside the fine-grained structure of the extruded alloy. SCC tests in the corrosive medium showed decreased strength and ductility due to the deteriorating effects of the corrosive environment and also the weak adhesion of the corrosion layer to the Mg substrate. Electrochemical testing indicated that the extruded alloy possesses higher corrosion resistance. This was ascribed to the fine grains that act as obstacles against Mg matrix dissolution and enhanced corrosion layer adhesion to the substrate as well as the absence of coarse second-phase particles, which are susceptible regions to promote the galvanic corrosion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Zhang, J. Li, Y. Song, C. Zhao, X. Zhang, C. Xie, Y. Zhang, H. Tao, Y. He, Y. Jiang, and Y. Bian, Mater. Sci. Eng. C 29, 1907 (2009).

    Google Scholar 

  2. E. Zhang, D. Yin, L. Xu, L. Yang, and K. Yang, Mater. Sci. Eng. C 29, 987 (2009).

    Google Scholar 

  3. G. Song, A. Atrens, D.S. John, X. Wu, and J. Nairn, Corros. Sci. 39, 1981 (1997).

    Google Scholar 

  4. M. Sabbaghian, R. Mahmudi, and K.S. Shin, Mater. Sci. Eng. A 792, 139828 (2020).

    Google Scholar 

  5. F. Abdiyan, R. Mahmudi, and H.M. Ghasemi, Mater. Chem. Phys. 271, 124878 (2021).

    Google Scholar 

  6. Z. Savaedi, H. Mirzadeh, R.M. Aghdam, and R. Mahmudi, J. Mater. Res. Technol. 19, 3100 (2022).

    Google Scholar 

  7. M. Sabbaghian, R. Mahmudi, and K.S. Shin, J. Magnes. Alloy. 7, 707 (2019).

    Google Scholar 

  8. M. Heiden, E. Walker, and L. Stanciu, J. Biotechnol. Biomater. 5, 178 (2015).

    Google Scholar 

  9. Y. Ding, C. Wen, P. Hodgson, and Y. Li, J. Mater. Chem. B 2, 1912 (2014).

    Google Scholar 

  10. V. Tsakiris, C. Tardei, and F.M. Clicinschi, J. Magnes. Alloy. 9, 1884 (2021).

    Google Scholar 

  11. D.H. Cho, B.W. Lee, J.Y. Park, K.M. Cho, and I.M. Park, J. Alloys Compd. 695, 1166 (2017).

    Google Scholar 

  12. M. Zohrevand, M. Mohammadi-Zerankeshi, F. Nobakht-Farin, R. Alizadeh, and R. Mahmudi, J. Mater. Res. Technol. 20, 1204 (2022).

    Google Scholar 

  13. B. Ebrahimpourghandi, and R. Mahmudi, J. Mater. Res. Technol. 21, 4648 (2022).

    Google Scholar 

  14. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, Biomaterials 30, 484 (2009).

    Google Scholar 

  15. X.Y. Fang, D.Q. Yi, J.F. Nie, X.J. Zhang, B. Wang, and L.R. Xiao, J. Alloys Compd. 470, 311 (2009).

    Google Scholar 

  16. Y. Li, C. Wen, D. Mushahary, R. Sravanthi, N. Harishankar, G. Pande, and P. Hodgson, Acta Biomater. 8, 3177 (2012).

    Google Scholar 

  17. H. Wang, Y. Estrin, H. Fu, G. Song, and Z. Zúberová, Adv. Eng. Mater. 9, 967 (2007).

    Google Scholar 

  18. H. Miyamoto, Mater. Trans. 57, 559 (2016).

    Google Scholar 

  19. D. Merson, E. Vasiliev, M. Markushev, and A. Vinogradov, Lett. Mater. 7, 421 (2017).

    Google Scholar 

  20. D. Ahmadkhaniha, M. Fedel, M. Heydarzadeh Sohi, and F. Deflorian, Surf. Eng. Appl. Electrochem. 53, 439 (2017).

  21. G. Ben-Hamu, D. Eliezer, W. Dietzel, and K.S. Shin, Corros. Sci. 50, 1505 (2008).

    Google Scholar 

  22. M.B. Kannan, and R.K.S. Raman, Biomaterials 29, 2306 (2008).

    Google Scholar 

  23. M.B. Kannan, and R.K.S. Raman, Scr. Mater. 59, 175 (2008).

    Google Scholar 

  24. D. Dubey, K. Kadali, S.S. Panda, A. Kumar, J. Jain, K. Mondal, and S.S. Singh, Mater. Sci. Eng. A 792, 139793 (2020).

    Google Scholar 

  25. G.R. Argade, W. Yuan, K. Kandasamy, and R.S. Mishra, J. Mater. Sci. 47, 6812 (2012).

    Google Scholar 

  26. E. Merson, V. Poluyanov, P. Myagkikh, D. Merson, and A. Vinogradov, Acta Mater. 205, 116570 (2021).

    Google Scholar 

  27. Z. Yu, J. Chen, H. Yan, W. Xia, B. Su, X. Gong, and H. Guo, Mater. Lett. 260, 126920 (2020).

    Google Scholar 

  28. S. Jafari, R.K.S. Raman, and C.H.J. Davies, Eng. Fract. Mech. 201, 47 (2018).

    Google Scholar 

  29. M. Sabbaghian, and R. Mahmudi, J. Mater. Eng. Perform. 25, 1856 (2016).

    Google Scholar 

  30. G. Faraji, M. Sabbaghian, A.R. Geranmayeh, and R. Mahmudi, Mater. Sci. Eng. A 855, 143953 (2022).

    Google Scholar 

  31. B. Ebrahimpourghandi, and R. Mahmudi, J. Alloys Compd. 942, 169132 (2023).

    Google Scholar 

  32. T. Zhao, Y. Hu, C. Zhang, B. He, T. Zheng, A. Tang, and F. Pan, J. Magnes. Alloy. 10, 387 (2022).

    Google Scholar 

  33. N. Bayat Tork, H. Saghafian, S. H. Razavi, K. J. Al-Fadhalah, R. Ebrahimi, and R. Mahmudi, J. Mater. Res. Technol. 8, 1288 (2019).

  34. N. Azizi, and R. Mahmudi, Mater. Sci. Eng. A 817, 141385 (2021).

    Google Scholar 

  35. J. Wang, Y. Guo, J. Li, Z. Yang, S. Kamado, and L. Wang, J. Alloys Compd. 653, 100 (2015).

    Google Scholar 

  36. M. Sabbaghian, N. Fakhar, P. Nagy, K. Fekete, and J. Gubicza, Mater. Sci. Eng. A 828, 142098 (2021).

    Google Scholar 

  37. R. Mahmudi, and M. Sadeghi, J. Mater. Eng. Perform. 22, 433 (2013).

    Google Scholar 

  38. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H.K. Kim, Mater. Des. 43, 31 (2013).

    Google Scholar 

  39. J. Kang, C. Wang, K. Deng, K. Nie, Y. Bai, and W. Li, J. Alloys Compd. 720, 196 (2017).

    Google Scholar 

  40. E. Merson, V. Poluyanov, P. Myagkikh, D. Merson, and A. Vinogradov, Mater. Sci. Eng. A 806, 140876 (2021).

    Google Scholar 

  41. E. Merson, V. Poluyanov, P. Myagkikh, D. Merson, and A. Vinogradov, Mater. Sci. Eng. A 772, 138744 (2020).

    Google Scholar 

  42. Z. Gui, Z. Kang, and Y. Li, Mater. Sci. Eng. C 96, 831 (2019).

    Google Scholar 

  43. F. Li, P. Guo, S. Han, C. Xu, J. Zhang, L. Yang, Z. Song, Y. Sun, W. Zhang, Q. Jia, and J. Kuan, Mater. Lett. 244, 70 (2019).

    Google Scholar 

  44. M. Sabbaghian, R. Mahmudi, and K.S. Shin, Metall. Mater. Trans. A 52, 1269 (2021).

    Google Scholar 

  45. N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, and K.U. Kainer, Acta Biomater. 6, 1714 (2010).

    Google Scholar 

  46. M. Gao, K. Yang, L. Tan, and Z. Ma, J. Magnes. Alloy. 10, 2147 (2022).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabbaghian, M., Ebrahimpourghandi, B. & Mahmudi, R. Influence of Hot Extrusion on the Microstructure, Bio-Corrosion and SCC Resistance of a Cast Mg-2.5Gd-0.5Zr Alloy. JOM 75, 2363–2373 (2023). https://doi.org/10.1007/s11837-023-05832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05832-4

Navigation