Skip to main content
Log in

Microstructure, Mechanical and Corrosion Properties of Mg-1.61Al-1.76Ca Alloy under Different Extrusion Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Extrusion temperature can significantly influence grain size, the shape of second phase particles and the dislocation distribution of Mg alloys. In this study, the effects of extrusion temperatures ranging from 250 to 400 °C on the microstructure, mechanical properties and corrosion resistance of a Mg-Al-Ca alloy with 1.61 wt.% Al and 1.76 wt.% Ca (Mg-1.61Al-1.76Ca) were investigated. The results showed that the size of grains and phases increased with an increase in extrusion temperature; the yield strength and ultimate tensile strength values decreased with an increase in temperature, while the fracture elongation increased initially (up to 300 °C) and decreased thereafter with an increase in temperature. Under test, the extruded alloy exhibited some evidence of corrosion at 250 °C, while extrusion at 300 °C demonstrated better corrosion resistance. Thus, the 300 °C extruded alloy possessed the optimum comprehensive performance because of the relatively small grains, fine second phase particles and fewer dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Xiong, Z. Liang, Z. Wang et al., Mechanical Properties and Degradation Behavior of Mg(100-7x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8) Alloys, Metals, 2018, 8, p 261

    Google Scholar 

  2. H. Zhang, X. Zheng, X. Tian et al., New Approaches for Rare Earth-Magnesium Based Hydrogen Storage Alloys, Prog. Nat. Sci. Mater. Int., 2017, 27, p 50–57

    Google Scholar 

  3. H. Xiong, L. Li, Y. Zhang et al., Microstructure and Discharge Behavior of Mg-Al-Sn-In Anode Alloys, J. Electrochem. Soc., 2017, 164, p A1745–A1754

    CAS  Google Scholar 

  4. X. Zhang, Y. Chen, J. Hu et al., Recent advances in the development of aerospace materials, Prog. Aerosp. Sci., 2018, 97, p 22–34

    Google Scholar 

  5. X. Wang, D. Xu, R. Wu et al., What is Going on in Magnesium Alloys?, J. Mater. Sci. Technol., 2017, 34, p 245–247

    CAS  Google Scholar 

  6. P.S. Roodposhti, A. Sarkar, K.L. Murty et al., Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25, p 3697–3709

    Google Scholar 

  7. B. Homayun and A. Afshar, Microstructure, Mechanical Properties, Corrosion Behavior and Cytotoxicity of Mg-Zn-Al-Ca Alloys as Biodegradable Materials, J. Alloys Compd., 2014, 607, p 1–10

    CAS  Google Scholar 

  8. P. Wu, F. Xu, K. Deng et al., Effect of Extrusion on Corrosion Properties of Mg-2Ca-χAl (χ = 0, 2, 3, 5) alloys, Corros. Sci., 2017, 127, p 280–290

    CAS  Google Scholar 

  9. X. Lu, G. Zhao, J. Zhou et al., Microstructure and Mechanical Properties of Mg-3.0Zn-1.0Sn-0.3Mn-0.3Ca Alloy Extruded at Different Temperatures, J. Alloys Compd., 2018, 732, p 257–269

    CAS  Google Scholar 

  10. B.A. Esgandari, H. Mehrjoo, B. Nami et al., The Effect of Ca and RE Elements on the Precipitation Kinetics of Mg17Al12 Phase During Artificial Aging of Magnesium Alloy AZ91, Mater. Sci. Eng. A, 2011, 528, p 5018–5024

    CAS  Google Scholar 

  11. H. Wang, E. Zhang, X. Nan et al., A Comparison of Microstructure and Mechanical Properties of Mg-9Al-1Zn Sheets Rolled from As-Cast, Cast-Rolling and As-Extruded Alloys, Mater. Des., 2016, 89, p 167–172

    CAS  Google Scholar 

  12. Z. Jiang, B. Jiang, J. Zhang et al., Effect of Al2Ca Intermetallic Compound Addition on Grain Refinement of AZ31 Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2014, 21, p 391

    Google Scholar 

  13. R. Verma, A. Srinivasan, R. Jayaganthan et al., Studies on Tensile Behaviour and Microstructural Evolution of UFG Mg-4Zn-4Gd Alloy Processed Through Hot Rolling, Mater. Sci. Eng. A, 2017, 704, p 414–426

    Google Scholar 

  14. S.W. Nam, High Temperature Properties and Recent Research Trend of Mg-RE Alloys, Korean J. Met. Mater., 2017, 55, p 213–221

    CAS  Google Scholar 

  15. Y.I. Choi, K. Kuroda, M. Okido et al., Temperature-Dependent Corrosion Behaviour of Flame-Resistant, Ca-Containing AZX911 and AMX602 Mg Alloys, Corros. Sci., 2016, 103, p 181–188

    CAS  Google Scholar 

  16. H. Pan, Y. Ren, H. Fu et al., Recent Developments in Rare-Earth Free Wrought Magnesium Alloys Having High Strength: A Review, J. Alloys Compd., 2015, 663, p 321–331

    Google Scholar 

  17. B. You, W. Park, I. Chung et al., The Effect of Calcium Additions on the Oxidation Behavior in Magnesium Alloys, Scr. Mater., 2000, 42, p 1089–1094

    CAS  Google Scholar 

  18. S.M. Masoudpanah and R. Mahmudi, Effects of Rare-Earth elements and Ca Additions on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Processed by ECAP, Mater. Sci. Eng. A, 2009, 526, p 22–30

    Google Scholar 

  19. Y. Zhang, L. Yang, C. Ge et al., Influence of Ca and Sr Addition on Impression Creep Behavior of Mg-4Al-RE Alloy, J. Mater. Eng. Perform., 2019, 28, p 394–403

    CAS  Google Scholar 

  20. S. Xu, N. Matsumoto, K. Yamamoto et al., High Temperature Tensile Properties of As-Cast Mg-Al-Ca Alloys, Mater. Sci. Eng. A, 2009, 509, p 105–110

    Google Scholar 

  21. L. Zhang, K. Deng, K. Nie et al., Microstructures and Mechanical Properties of Mg-Al-Ca Alloys Affected by Ca/Al Ratio, Mater. Sci. Eng. A, 2015, 636, p 279–288

    CAS  Google Scholar 

  22. K. Yan, J. Zhao, G. Fang et al., Constitutive Behavior and Forming Limit of Mg-Al-Ca-Gd Alloy Sheets at Room and Elevated Temperatures, J. Mater. Eng. Perform., 2018, 27, p 4197–4209

    CAS  Google Scholar 

  23. D. Xiao, Z. Chen, X. Wang et al., Microstructure, Mechanical and Creep Properties of High Ca/Al Ratio Mg-Al-Ca Alloy, Mater. Sci. Eng. A, 2016, 660, p 166–171

    CAS  Google Scholar 

  24. J. Yang, J. Peng, E.A. Nyberg et al., Effect of Ca Addition on the Corrosion Behavior of Mg-Al-Mn Alloy, Appl. Surf. Sci., 2016, 369, p 92–100

    CAS  Google Scholar 

  25. K.H. Kim, N.D. Nam, J.G. Kim et al., Effect of Calcium Addition on the Corrosion Behavior of Mg-5Al Alloy, Intermetallics, 2011, 19, p 1831–1838

    CAS  Google Scholar 

  26. M. Ben-Haroush, G. Ben-Hamu, D. Eliezer et al., The Relation Between Microstructure and Corrosion Behavior of AZ80 Mg Alloy Following Different Extrusion Temperatures, Corros. Sci., 2008, 50, p 1766–1778

    CAS  Google Scholar 

  27. Y.S. Jeong and W.J. Kim, Enhancement of Mechanical Properties and Corrosion Resistance of Mg-Ca Alloys Through Microstructural Refinement by Indirect Extrusion, Corros. Sci., 2014, 82, p 392–403

    CAS  Google Scholar 

  28. H. Watanabe, M. Yamaguchi, Y. Takigawa et al., Mechanical Properties of Mg-Al-Ca Alloy Processed by Hot Extrusion, Mater. Sci. Eng. A, 2007, 454, p 384–388

    Google Scholar 

  29. Z. Shi, M. Liu, and A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation, Corros. Sci., 2010, 52, p 579–588

    CAS  Google Scholar 

  30. R. Ninomiya, T. Ojiro, and K. Kubota, Improved Heat Resistance of Mg-Al Alloys by the Ca Addition, Acta Metall. Et Mater., 1995, 43, p 669–674

    CAS  Google Scholar 

  31. X. Hong, X. Zhang, K. Zhang et al., Effect of Extrusion on Corrosion Behavior and Corrosion Mechanism of Mg-Y Alloy, J. Rare Earths, 2016, 34, p 315–327

    Google Scholar 

  32. Z. Li, X. Zhang, M. Zheng et al., Effect of Ca/Al ratio on Microstructure and Mechanical Properties of Mg-Al-Ca-Mn Alloys, Mater. Sci. Eng. A, 2017, 682, p 423–432

    CAS  Google Scholar 

  33. Z. Jiang, B. Jiang, H. Yang et al., Influence of the Al2Ca Phase on Microstructure and Mechanical Properties of Mg-Al-Ca Alloys, J. Alloys Compd., 2015, 647, p 357–363

    CAS  Google Scholar 

  34. W. Yuan, S.K. Panigrahi, J.Q. Su et al., Influence of Grain Size and Texture on Hall-Petch Relationship for a Magnesium Alloy, Scr. Mater., 2011, 65, p 994–997

    CAS  Google Scholar 

  35. A.V. Koltygin, V.E. Bazhenov, E.A. Belova et al., Development of a Magnesium Alloy with Good Casting Characteristics on the Basis of Mg-Al-Ca-Mn System, Having Mg-Al2Ca Structure, J. Magnes. Alloys, 2013, 1, p 224–229

    CAS  Google Scholar 

  36. A. Suzuki, N.D. Saddock, J.R. TerBush et al., Precipitation Strengthening of a Mg-Al-Ca-Based AXJ530 Die-Cast Alloy, Metall. Mater. Trans. A, 2008, 39, p 696–702

    Google Scholar 

  37. F. Wang, T. Hu, Y. Zhang et al., Effects of Al and Zn Contents on the Microstructure and Mechanical Properties of Mg-Al-Zn-Ca Magnesium Alloys, Mater. Sci. Eng. A, 2017, 704, p 57–65

    CAS  Google Scholar 

  38. L. Fan, H. Lu, and J. Leng, Performance of Fine Structured Aluminum Anodes in Neutral and Alkaline Electrolytes for Al-Air Batteries, Electrochim. Acta, 2015, 165, p 22–28

    CAS  Google Scholar 

  39. G. Song, Recent Progress in Corrosion and Protection of Magnesium Alloys, Adv. Eng. Mater., 2005, 7, p 563–586

    CAS  Google Scholar 

  40. G. Song and A. Atrens, Understanding Magnesium Corrosion-a Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    CAS  Google Scholar 

  41. G. Song, Effect of Tin Modification on Corrosion of AM70 Magnesium Alloy, Corros. Sci., 2009, 51, p 2063–2070

    CAS  Google Scholar 

  42. J. Ma, J. Wen, G. Li et al., The Corrosion Behaviour of Al-Zn-In-Mg-Ti Alloy in NaCl Solution, Corros. Sci., 2010, 52, p 534–539

    CAS  Google Scholar 

  43. R. Udhayan and D.P. Bhatt, On the Corrosion Behaviour of Magnesium and its Alloys Using Electrochemical Techniques, J. Power Sour., 1996, 63, p 103–107

    CAS  Google Scholar 

  44. T. Hong, Y.H. Sun, and W.P. Jepson, Study on Corrosion Inhibitor in Large Pipelines Under Multiphase Flow Using EIS, Corros. Sci., 2002, 44, p 101–112

    CAS  Google Scholar 

  45. T. Zhang, Y. Shao, G. Meng et al., Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-Relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53, p 1960–1968

    CAS  Google Scholar 

  46. D. Song, A.B. Ma, J. Jiang et al., Corrosion Behavior of Equal-Channel-Angular-Pressed Pure Magnesium in NaCl Aqueous Solution, Corros. Sci., 2010, 52, p 481–490

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Education Department of Hunan Province (17A019, 15C0116, 16C0140), China. The authors also acknowledge the Project (KC1809018, K1705052) supported by the science and technology program of Changsha and the outstanding youth project (18B418) of Education Department of Hunan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqing Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Wang, Z., Li, G. et al. Microstructure, Mechanical and Corrosion Properties of Mg-1.61Al-1.76Ca Alloy under Different Extrusion Temperatures. J. of Materi Eng and Perform 29, 672–680 (2020). https://doi.org/10.1007/s11665-020-04557-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04557-8

Keywords

Navigation