Skip to main content
Log in

An Improved Mineral Image Recognition Method Based on Deep Learning

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Identification of rock minerals is one of the fundamental procedures of geology and mineralogy. Computer vision technologies and the theory of deep learning (DL) make intelligent rock mineral identification possible. The polarizing microscope pictures of iron ore as the data source, a composite dataset consisting of transmitted light images and reflected light images was developed in this investigation. Using the Deeplabv3+ network, a targeted mineral identification network model was created based on the DL theory. This model can effectively and automatically extract the deep feature information of ore mineral images under a polarizing microscope, as well as achieve intelligent identification and classification of transparent minerals and non-transparent minerals. The model was then improved by freezing training, enlarging the receptive area, and utilizing FC-CRF. The outcome demonstrated the outstanding performance. The total mineral recognition accuracy reached 97.56%, and the recognition accuracy of certain minerals was up to 99%. The identification result obtained by the improved mineral identification model accurately depicts the mineral species information of the microscope photographs, providing a convenient and trustworthy data source for the development of intelligent mineralogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Misra, Understanding Mineral Deposits (Springer Science & Business Media, Amsterdam, 2000), pp3–4.

    Book  Google Scholar 

  2. W. Lou, D. Zhang, and R.C. Bayless, Appl. Geochem. 122, 104727 (2020).

    Article  Google Scholar 

  3. Y.-C. Wu and J.-W. Feng, Wireless Pers. Commun. 102, 1645–1656 (2018).

    Article  Google Scholar 

  4. Y. Zhang, M. Li, S. Han, Q. Ren, and J. Shi, Sensors 19, 3914 (2019).

    Article  Google Scholar 

  5. S. Aligholi, G.R. Lashkaripour, R. Khajavi, and M. Razmara, Pattern Recogn. 65, 164–174 (2017).

    Article  Google Scholar 

  6. A. Ramil, A. López, J. Pozo-Antonio, and T. Rivas, Measurement 117, 90–95 (2018).

    Article  Google Scholar 

  7. Y. Liu, Z. Zhang, X. Liu, L. Wang, and X. Xia, Adv. Powder Technol. 32, 3885–3903 (2021).

    Article  Google Scholar 

  8. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, arXiv preprint arXiv:1704.04861 (2017).

  9. X. Zeng, Y. Xiao, X. Ji, and G. Wang, Minerals 11, 506 (2021).

    Article  Google Scholar 

  10. G.E. Hinton and R.R. Salakhutdinov, Science 313, 504–507 (2006).

    Article  MathSciNet  Google Scholar 

  11. Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436–444 (2015).

    Article  Google Scholar 

  12. C.M. Bastuscheck, In CVPR, (1989), pp 262–268.

  13. G. Montavon, W. Samek, and K.-R. Müller, Digital Signal Process. 73, 1–15 (2018).

    Article  MathSciNet  Google Scholar 

  14. D. Ciregan, U. Meier, and J. Schmidhuber, In 2012 IEEE conference on computer vision and pattern recognition (IEEE: 2012), pp 3642–3649.

  15. A. Khvostikov, D. Korshunov, A. Krylov, and M. Boguslavskiy, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 44, 113–118 (2021).

    Article  Google Scholar 

  16. H. Zhang, Z. Tang, Y. Xie, X. Gao, Q. Chen, and W. Gui, Miner. Eng. 160, 106677 (2021).

    Article  Google Scholar 

  17. A. Zakamaldin and A.A. Shilin, In IOP Conference Series: Materials Science and Engineering (IOP Publishing: 2020), p. 012010.

  18. A.A.C. Pereira, C.A.C. Olivera, A.G. Merma, R.R. Hacha, B.F. dos Santos, and M.L. Torem, Miner. Eng. 169, 106983 (2021).

    Article  Google Scholar 

  19. M.P. Filippo, O.F.M. Gomes, G.A.O.P. da Costa, and G.L.A. Mota, Miner. Eng. 170, 107007 (2021).

    Article  Google Scholar 

  20. D.G. Tang, K.L. Milliken, and K.T. Spikes, Mar. Pet. Geol. 120, 104518 (2020).

    Article  Google Scholar 

  21. G. Latif, K. Bouchard, J. Maitre, A. Back, and L.P. Bédard, Minerals 12, 455 (2022).

    Article  Google Scholar 

  22. P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, Procedia Comput. Sci. 199, 1066–1073 (2022).

    Article  Google Scholar 

  23. G. Xu, Y. Zhang, Q. Zhang, G. Lin, Z. Wang, Y. Jia, and J. Wang, Fire Saf. J. 105, 277–285 (2019).

    Article  Google Scholar 

  24. B.I.M. Shakkak and S.A.K. Al Mazruii, Appl. Comput. J. 2, 193–212 https://doi.org/10.52098/acj.202247 (2022).

    Article  Google Scholar 

  25. K. He, X. Zhang, S. Ren and J. Sun, In Proceedings of the IEEE conference on computer vision and pattern recognition, (2016), pp 770–778.

  26. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, In Proceedings of the European conference on computer vision (ECCV) (2018), pp 801–818.

  27. G. Andrew and J. Gao, In Proceedings of the 24th international conference on Machine learning (2007), pp 33–40.

  28. A. Arnab, S. Zheng, S. Jayasumana, B. Romera-Paredes, M. Larsson, A. Kirillov, B. Savchynskyy, C. Rother, F. Kahl, and P.H. Torr, IEEE Signal Process. Mag. 35, 37–52 (2018).

    Article  Google Scholar 

  29. S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P.H. Torr, In Proceedings of the IEEE international conference on computer vision (2015), pp 7–13.

  30. M. Ovsjanikov, J. Sun, and L. Guibas, In Computer graphics forum (Wiley Online Library: 2008), pp 1341–1348.

  31. Y.-W. Chen and C.-J. Lin, Feature Extr. Found. Appl. 207, 315–324 (2006).

    Article  Google Scholar 

  32. H. Torbati-Sarraf, S. Niverty, R. Singh, D. Barboza, V. De Andrade, P. Turaga, and N. Chawla, JOM 73, 2173–2184 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (E2022209119 & D2020209017), the National Natural Science Foundation of China (42002098 & 52004091) and the Central Government Guides Local Science and Technology Development Fund Project (226Z4103G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Wang, H., Wang, L. et al. An Improved Mineral Image Recognition Method Based on Deep Learning. JOM 75, 2590–2602 (2023). https://doi.org/10.1007/s11837-023-05792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05792-9

Navigation