Skip to main content
Log in

Deep Insight into Mold Level Fluctuation During Casting Different Steel Grades

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

During the continuous casting, the mold level fluctuation (MLF) is one of the key parameters to limit the casting speed and the slab quality. Industrial practices show that the steel grades with different carbons have different MLFs. The MLF is up to 10 mm for hypo-peritectic steel (the carbon content is close to the maximum saturated solubility of carbon in δ ferrite), 3 mm for peritectic steel (carbon content is close to the peritectic point), and < 2 mm for ultra-low carbon steel and low carbon steel. Power spectral density is an effective method to determine the characteristic frequency of abnormal MLF and the resonance phenomenon, and the frequency domain data with zero amplitude of harmonic wave at a specified frequency are an effective method to determine the main frequency of abnormal MLF. For hypo-peritectic steel (w[C] = 0.13), the abnormal MLF comes from the harmonic wave of 0.32 Hz, and the MLF resonance occurs because the main frequency of the MLF is close to the withdraw force. Volume contraction and the uneven thickness of the solidified shell are two key factors that affect the MLF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Matsushita, K. Isogami, M. Temma, and T. Ninomiya, Trans. ISIJ 7, 531 (1988).

    Article  Google Scholar 

  2. H. Lei, H. Xu, M. Zhu, and Y. Gan, Steel. Iron. 8, 20 (1999).

    Google Scholar 

  3. R. Miranda, M.A. Barron, J. Barreto, L. Hoyos, and J. Gonzalez, ISIJ Int. 11, 1626 (2005).

    Article  Google Scholar 

  4. B. Shen, H. Shen, and B.C. Liu, ISIJ Int. 3, 427 (2007).

    Article  Google Scholar 

  5. B.Z. Shen, H.F. Shen, and B.C. Liu, Ironmak Steelmak. 1, 33 (2009).

    Article  Google Scholar 

  6. H. Zhang and W. Wang, Metall. Mater. Trans. B 2, 920 (2016).

    Article  Google Scholar 

  7. H. Ohno, Y. Miki, and Y. Nishizawa, ISIJ Int. 10, 1758 (2016).

    Article  Google Scholar 

  8. Y. Yin, J. Zhang, B. Wang, and Q. Dong, Ironmak Steelmak. 7, 682 (2019).

    Article  Google Scholar 

  9. H. Duan, X. Wang, M. Yao, Y. Liu, and YYu. Mater, Trans. B 4, 1656 (2020).

    Google Scholar 

  10. K. Zhang, J. Liu, H. Cui, and C. Xiao, Metall. Mater. Trans. B 3, 1174 (2018).

    Article  Google Scholar 

  11. Z.K. Jiang, Z.J. Su, C.Q. Xu, J. Chen, and J.C. He, J. Iron Steel Res. Int. 2, 160 (2020).

    Article  Google Scholar 

  12. J. Yang, D. Chen, M. Long, and H. Duan, J. Mater. Res. Technol. 3, 3984 (2020).

    Article  Google Scholar 

  13. C.L.M. Alves, J. Rezende, D. Senk, and J. Kundin, J. Mater. Res. Technol. 1, 233 (2019).

    Article  Google Scholar 

  14. J.D. Lee and C.H. Yim, ISIJ Int. 8, 765 (2000).

    Article  Google Scholar 

  15. H. Bayani, S.M.H. Mirbagheri, and M. Barzegari, J. Mater. Res. Technol. 1, 55 (2014).

    Article  Google Scholar 

  16. P. Presoly, R. Pierer, and C. Bernhard, Metall. Mater. Trans. A. 6, 5377 (2013).

    Article  Google Scholar 

  17. G. Azizi, B.G. Thomas, and M.A. Zaeem, Metall. Mater. Trans. B 5, 2020 (1875).

    Google Scholar 

  18. Q.Q. Ren, T. Liu, S. Balk, Z.G. Mao, and B.W. Krakauer, J. Mater. Sci. 10, 6448 (2021).

    Article  Google Scholar 

  19. M. Suzuki and Y. Yamaoka, Mater. Trans. 3, 836 (2003).

    Article  Google Scholar 

  20. H. Mizukami and A. Yamanaka, ISIJ Int. 3, 435 (2010).

    Article  Google Scholar 

  21. Y. Sugitani and M. Nakamura, Tetsu-to-Hagane 12, 1702 (1979).

    Article  Google Scholar 

  22. T. Kajitani, H. Esaka, M. Wakoh, H. Misumi, and S. Ogibayashi, Tetsu-to-Hagane 11, 1055 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Density change and volume change

Appendix: Density change and volume change

Or the steel with mass m, the density and the volume are \(\rho_{1}\) and \(V_{1}\) at the temperature \(T_{1}\), and the density and volume are \(\rho_{2}\) and \(V_{2}\) at the temperature \(T_{2}\). Then, the related volume change from the temperature \(T_{1}\) to the temperature \(T_{2}\) can be expressed as follows.

$$ \frac{{V_{2} - V_{1} }}{{V_{2} }} = \frac{{m/\rho_{2} \, - m/\rho_{1} }}{{m/\rho_{2} }} = 1 \, - \frac{{\rho_{2} }}{{\rho_{1} }} = \frac{{\rho_{1} \, - \rho_{2} }}{{\rho_{1} }} $$
(2)

Thus, the volume variation with the temperature can be expressed by the density variation with the temperature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Liu, J., Tang, G. et al. Deep Insight into Mold Level Fluctuation During Casting Different Steel Grades. JOM 75, 914–919 (2023). https://doi.org/10.1007/s11837-022-05668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05668-4

Navigation