Skip to main content
Log in

Defluorination of Waste Cathodic Carbon Through Steam Under Conventional High-Temperature Roasting

  • Reprocessing and Recycling of Tailings from Metallurgical Process
  • Published:
JOM Aims and scope Submit manuscript

Abstract

With the development of the electrolytic aluminum industry, a large number of waste cathode carbons (WCC) of electrolytic aluminum remain, which are typical harmful solid wastes and cause serious harm to the environment. The harmless treatment of WCC is extremely important. Conventional heating and steaming is a good treatment method for WCC blocks. Fluoride has good selective heating characteristics, which promote the transformation of fluoride to escape in the form of gas, and realizes the separation of carbon and fluorine in the WCC of electrolytic aluminum. The characterization of WCC under steam high-temperature calcination was compared with that under traditional high-temperature calcination and chemical leaching. Tests show that, under the condition of water vapor, the carbon layer of WCC is larger, which is more conducive to the separation of carbon and fluorine. In this paper, the effects of different temperatures, heating times, and water flow rates on the defluorination rate were studied. The results showed that, when the WCC was heated at 950°C for 3 h, and the flow rate was 3.5 g/min, the defluorination effect of cathode carbon was the best, reaching 93%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.B. Personnet, Essential Readings in Light Metals (Springer, Berlin, 2016), pp 1049–1056.

    Book  Google Scholar 

  2. D.F. Lisbona, C. Somerfield, and K.M. Steel, Hydrometallurgy 134, 132 (2013).

    Article  Google Scholar 

  3. V. Mambakkam, R. Alicandri, and K. Chattopadhyay, Light Metals 2019 (Springer, Berlin, 2019), pp 857–866.

    Book  Google Scholar 

  4. M.L.G. Renó, F.M. Torres, R.J. da Silva, J.J.C.S. Santos, and M.D.L.N.M. Melo, Energy Convers. Manag. 75, 98 (2013).

    Article  Google Scholar 

  5. D.F. Lisbona, and K.M. Steel, Sep. Purif. Technol. 61, 182–192. (2008).

    Article  Google Scholar 

  6. A. Agrawal, K. Sahu, and B. Pandey, Resour. Conserv. Recycl. 42, 99. (2004).

    Article  Google Scholar 

  7. T. Maffei, R. Khatami, S. Pierucci, T. Faravelli, E. Ranzi, and Y.A. Levendis, Combust. Flame 160, 2559 (2013).

    Article  Google Scholar 

  8. R. Hurt, J.-K. Sun, and M. Lunden, Combust. Flame 113, 181. (1998).

    Article  Google Scholar 

  9. S. Bhatia, and D. Perlmutter, AIChE J. 27, 247. (1981).

    Article  Google Scholar 

  10. I. Smith, Combust. Flame 17, 303. (1971).

    Article  Google Scholar 

  11. A. Agrawal, C. Kumar, and A. Meshram, Mater. Today Proc. 46, 1526. (2021).

    Article  Google Scholar 

  12. G. Holywell, and R. Breault, JOM 65, 1441 (2013).

    Article  Google Scholar 

  13. S. Dubey, and D. Holmes, World J. Microbiol. Biotechnol. 11, 257. (1995).

    Article  Google Scholar 

  14. P.Y. Brisson, G. Soucy, M. Fafard, H. Darmstadt and G. Servant, In TMS 2005, (2005).

  15. N. Bell, J.N. Andersen and H.-K.H. Lam, (Google Patents: 1978).

  16. R.P. Pawlek, Light Metals 2012 (Springer, Berlin, 2012), pp 1313–1317.

    Book  Google Scholar 

  17. S.M.J. Mirazimi, F. Rashchi, and M. Saba, Sep. Purif. Technol. 116, 175 (2013).

    Article  Google Scholar 

  18. L. Andrade-Vieira, L. Davide, L. Gedraite, J. Campos, and H. Azevedo, Ecotoxicol. Environ. Saf. 74, 2065. (2011).

    Article  Google Scholar 

  19. R.P. Pawlek, JOM 45, 48. (1993).

    Article  Google Scholar 

  20. B. Sanjuan, and G. Michard, Geochim. Cosmochim. Acta 51, 1823. (1987).

    Article  Google Scholar 

  21. N. Li, G. Xie, Z.X. Wang, Y.Q. Hou and R.X. Li, In Advanced Materials Research, (Trans Tech Publ: 2014), pp. 1660–1664.

  22. J. Xiao, J. Yuan, Z. Tian, K. Yang, Z. Yao, B. Yu, and L. Zhang, Ultrason. Sonochem. 40, 21. (2018).

    Article  Google Scholar 

  23. J. Yuan, J. Xiao, F. Li, B. Wang, Z. Yao, B. Yu, and L. Zhang, Ultrason. Sonochem. 41, 608. (2018).

    Article  Google Scholar 

  24. M. Somerville, R. Davidson, S. Wright, and S. Jahanshahi, J. Sustain. Metall. 3, 486. (2017).

    Article  Google Scholar 

  25. J.B. Snodgrass and E.L. Cambridge, (Google Patents: 1984).

  26. G. Felling, and P. Webb, Light Met. Age-Chicago 53, 40. (1995).

    Google Scholar 

  27. Z.-N. Shi, L. Wei, X.-W. Hu, B.-J. Ren, B.-L. Gao, and Z.-W. Wang, Trans. Nonferrous Met. Soc. China 22, 222. (2012).

    Article  Google Scholar 

  28. U. Ntuk, S. Tait, E.T. White, and K.M. Steel, Hydrometallurgy 155, 79. (2015).

    Article  Google Scholar 

  29. B. Silveira, A. Dantas, J. Blasquez, and R. Santos, J. Hazard. Mater. 89, 177. (2002).

    Article  Google Scholar 

  30. J.L. Rose, J. Mu and Y. Cho, in Proceedings of the 17th World Conference on Non-Destructive Testing, Shanghai, China, (Citeseer: 2008), pp. 25–28.

  31. C. Ghenai, A. Inayat, A. Shanableh, E. Al-Sarairah, and I. Janajreh, Sci. Total Environ. 684, 519. (2019).

    Article  Google Scholar 

  32. M. Cenčič, I. Kobal, and J. Golob, Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 21, 523. (1998).

    Google Scholar 

  33. Z. Bo, J. Zhao, L. Liang, R. Shi, W. Tang, and X. Li, Light Met. 5, 27. (2015).

    Google Scholar 

Download references

Acknowledgements

Yunnan Ten Thousand Talents Plan Industrial Technology Talents Project (2019–1096), Yunnan Ten Thousand Talents Plan Young & Elite Talents Project (2018-73) and the Analysis and testing fund of Kunming University of Science and Technology (2021T20090154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Xia, H., Zhang, Q. et al. Defluorination of Waste Cathodic Carbon Through Steam Under Conventional High-Temperature Roasting. JOM 75, 400–406 (2023). https://doi.org/10.1007/s11837-022-05544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05544-1

Navigation