Skip to main content
Log in

Significant Hetero-Deformation Induced Strain Hardening in a Dual-Phase Low-Carbon Steel

  • Heterostructured Materials: A Fast Emerging Materials Field
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The strength improvement of low-carbon steel usually occurs at the expense of its ductility because the strain-hardening rate of ultrafine-grained material is relatively low. The heterostructured strategy is a new way to improve the strain-hardening rate in carbon steels, and is easy to achieve by phase transformation. In this work, intercritical annealing was performed on a low-carbon steel to produce a dual-phase heterostructure, which had higher strength and ductility than that of a uniform ferrite microstructure. An outstanding UTS of 960 MPa and a high uniform elongation of 16.5% were obtained in the heterostructured sample. In situ electron backscattered diffraction was performed to investigate the underlying deformation mechanism. Due to the mechanical incompatibility between ferrite and martensite, a much higher density of low-angle grain boundaries was found in the dual-phase heterostructured steel. Significant strain partitioning during deformation leads to a high density of geometrically necessary dislocations (GNDs) near zone boundaries. These GNDs provide hetero-deformation-induced strain hardening, eventually improving the combination of strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, and R.O. Ritchie, Science 368, 1347. https://doi.org/10.1126/science.aba9413 (2020).

    Article  Google Scholar 

  2. B. Gao, Q.Q. Lai, Y. Cao, R. Hu, L.R. Xiao, Z.Y. Pan, N.N. Liang, Y.S. Li, G. Sha, M.P. Liu, H. Zhou, X.L. Wu, and Y.T. Zhu, Sci. Adv. 6, eaba8169. https://doi.org/10.1126/sciadv.aba8169 (2020).

  3. J. Hannula, D.A. Porter, A. Kaijalainen, and J. Kömi, JOM 71, 2405. https://doi.org/10.1007/s11837-019-03478-9 (2019).

  4. T. Nishi, T. Saito, A. Yamada, and Y. Takahashi, Nippon Steel Technical Report Overseas 20, 37. (1982).

    Google Scholar 

  5. Q.Q. Lai, O. Bouaziz, M. Gouné, A. Perlade, Y. Bréchet, and T. Pardoen, Mater. Sci. Eng. A 638, 78. https://doi.org/10.1016/j.msea.2015.04.044 (2015).

    Article  Google Scholar 

  6. J.W. Zhao and Z. Jiang, Prog. Mater. Sci. 94, 174. https://doi.org/10.1016/j.pmatsci.2018.01.006 (2018).

  7. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, JOM 68, 1216. https://doi.org/10.1007/s11837-016-1820-6 (2016).

  8. Y. Estrin and A. Vinogradov, Acta Mater. 61, 782. https://doi.org/10.1016/j.actamat.2012.10.038 (2013).

  9. R.N. Harsha, V.M. Kulkarni, and B.S. Babu, Mater. Today: Proceedings 5, 22340. https://doi.org/10.1016/j.matpr.2018.06.600 (2018).

  10. S.D. Sun, D.W. Li, C.P. Yang, L.B. Fu, D.L. Kong, Y. Lu, Y.Z. Guo, D.M. Liu, P.F. Guan, Z. Zhang, J.H. Chen, W.Q. Ming, L.H. Wang, and X.D. Han, Phys. Rev. Lett. 128, 015701. https://doi.org/10.1103/PhysRevLett.128.015701 (2022).

  11. Y.T. Zhu, K. Ameyama, P.M. Anderson, I.R. Beyerlein, H.J. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, N. Tsuji, X.Y. Zhang, and X.L. Wu, Mater. Res. Lett. 9, 1. https://doi.org/10.1080/21663831.2020.1796836 (2021).

    Article  Google Scholar 

  12. D.C. Kong, C.F. Dong, X.Q. Ni, Z. Liang, C. Man, and X.G. Li, Mater. Res. Lett. 8, 390. https://doi.org/10.1080/21663831.2020.1775149 (2020).

    Article  Google Scholar 

  13. Y. Cao, W.D. Zhang, B. Liu, M. Song, and Y. Liu, Mater. Res. Lett. 8, 254. https://doi.org/10.1080/21663831.2020.1745919 (2020).

    Article  Google Scholar 

  14. M.X. Yang, R.G. Li, P. Jiang, F.P. Yuan, Y.D. Wang, Y.T. Zhu, and X.L. Wu, Mater. Res. Lett. 7, 433. https://doi.org/10.1080/21663831.2019.1635537 (2019).

    Article  Google Scholar 

  15. C. Zhang, C.Y. Zhu, P.H. Cao, X. Wang, F. Ye, K. Kaufmann, L. Casalena, B.E. MacDonald, X.Q. Pan, K. Vecchio, and E.J. Lavernia, Acta Mater. 199, 601. https://doi.org/10.1016/j.actamat.2020.08.043 (2020).

  16. Y.F. Wang, M.X. Yang, X.L. Ma, M.S. Wang, K. Yin, A.H. Huang, and C.X. Huang, Mater. Sci. Eng. A 727, 113. https://doi.org/10.1016/j.msea.2018.04.107 (2018).

    Article  Google Scholar 

  17. Z. Zhang, S.K. Vajpai, D. Orlov, and K. Ameyama, Mater. Sci. Eng. A 598, 106. https://doi.org/10.1016/j.msea.2014.01.023 (2014).

    Article  Google Scholar 

  18. R.X. Zheng, G.D. Li, Z. Zhang, Y.T. Zhang, S.Y. Yue, X. Chen, K. Ameyama, and C.L. Ma, Mater. Res. Lett. 7, 217. https://doi.org/10.1080/21663831.2019.1580621 (2019).

    Article  Google Scholar 

  19. M.G. Jiang, Z.W. Chen, J.D. Tong, C.Y. Liu, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, and C.S. Lao, Mater. Res. Lett. 7, 426. https://doi.org/10.1080/21663831.2019.1631224 (2019).

    Article  Google Scholar 

  20. M. Nouroozi, H. Mirzadeh, and M. Zamani, Mater. Sci. Eng. A 736, 22. https://doi.org/10.1016/j.msea.2018.08.088 (2018).

    Article  Google Scholar 

  21. F. Jamei, H. Mirzadeh, and M. Zamani, Mater. Sci. Eng. A 750, 125. https://doi.org/10.1016/j.msea.2019.02.052 (2019).

    Article  Google Scholar 

  22. M. Soleimani, and H. Mirzadeh, Mater. Sci. Eng. A 804, 140778. https://doi.org/10.1016/j.msea.2021.140778 (2021).

    Article  Google Scholar 

  23. B. Gao, R. Hu, Z.Y. Pan, X.F. Chen, Y. Liu, L.R. Xiao, Y. Cao, Y.S. Li, Q.Q. Lai, and H. Zhou, J. Mater. Sci. Technol. 65, 29. https://doi.org/10.1016/j.jmst.2020.03.083 (2021).

  24. B. Gao, X.F. Chen, Z.Y. Pan, J.S. Li, Y. Ma, Y. Cao, M.P. Liu, Q.Q. Lai, L.R. Xiao, and H. Zhou, J. Mater. Sci. 54, 12898. https://doi.org/10.1007/s10853-019-03785-1 (2019).

  25. H. Zhou, C.X. Huang, X.C. Sha, L.R. Xiao, X.L. Ma, H.W. H ppel, M. G ken, X.L. Wu, K. Ameyama, X.D. Han, and Y.T. Zhu, Mater. Res. Lett. 7, 376. https://doi.org/10.1080/21663831.2019.1616330 (2019).

  26. L.H. Wang, Y. Zhang, Z. Zeng, H. Zhou, J. He, P. Liu, M.W. Chen, J. Han, D.J. Srolovitz, J. Teng, Y.Z. Guo, G. Yang, D.L. Kong, E. Ma, Y.L. Hu, B.C. Yin, X.X. Huang, Z. Zhang, T. Zhu, and X.D. Han, Science 375, 1261. https://doi.org/10.1126/science.abm2612 (2022).

  27. D. Frazer, J.L. Bair, E.R. Homer, and P. Hosemann, JOM 72, 2051. https://doi.org/10.1007/s11837-020-04075-x (2020).

  28. S. Hémery and P. Villechaise, Acta. Mater. 171, 261. https://doi.org/10.1016/j.actamat.2019.04.033 (2019).

  29. M.A. Asadabad, M. Goodarzi, and S. Kheirandish, Isij Int. 48, 1251. https://doi.org/10.2355/isijinternational.48.1251 (2008).

  30. A. Ghaheri, A. Shafyei, and M. Honarmand, Mater. Design 62, 305. https://doi.org/10.1016/j.matdes.2014.04.073 (2014).

    Article  Google Scholar 

  31. C. Du, J.P.M. Hoefnagels, R. Vaes, and M.G.D. Geers, Scripta Mater. 116, 117. https://doi.org/10.1016/j.scriptamat.2016.01.043 (2016).

  32. J.H. Kim, S.W. Lee, K. Lee, J.K. Kim, and D.W. Suh, JOM 71, 1366. https://doi.org/10.1007/s11837-019-03332-y (2019).

  33. M. Michiuchi, S. Nambu, Y. Ishimoto, J. Inoue, and T. Koseki, Acta Mater. 57, 5283. https://doi.org/10.1016/j.actamat.2009.06.021 (2009).

  34. R. Wei, M. Enomoto, R. Hadian, S.H. Zurob, and R.G. Purdy, Acta Mater. 61, 697. https://doi.org/10.1016/j.actamat.2012.10.019 (2013).

  35. N. Farabi, D.L. Chen, and Y. Zhou, J. Mater. Eng. Perform. 21, 222. https://doi.org/10.1007/s11665-011-9865-8 (2012).

  36. N. Saeidi, F. Ashrafizadeh, and B. Niroumand, Mater. Sci. Eng. A 599, 145. https://doi.org/10.1016/j.msea.2014.01.053 (2014).

    Article  Google Scholar 

  37. Y. Liu, D. Fan, S.P. Bhat, and A. Srivastava, Int. J. Plast. 125, 80. https://doi.org/10.1016/j.ijplas.2019.08.019 (2020).

  38. G. Gerstein, H.B. Besserer, F. Nürnberger, L.A. Barrales-Mora, L.S. Shvindlerman, Y. Estrin, and H.J. Maier, J. Mater. Sci. 52, 4234. https://doi.org/10.1007/s10853-016-0678-x (2017).

  39. Q.Q. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Br chet, and T. Pardoen, Mater. Sci. Eng. A 646, 322. https://doi.org/10.1016/j.msea.2015.08.073 (2015).

  40. Z.Z. Yu, R. Barabash, O. Barabash, W.J. Liu, and Z.L. Feng, JOM 65, 21. https://doi.org/10.1007/s11837-012-0494-y (2013).

  41. C.P. Scott, B.S. Amirkhiz, I. Pushkareva, F. Fazeli, S.Y.P. Allain, and H. Azizi, Acta Mater. 159, 112. https://doi.org/10.1016/j.actamat.2018.08.010 (2018).

  42. C. Tian, D. Ponge, L. Christiansen, and C. Kirchlechner, Acta Mater. 183, 274. https://doi.org/10.1016/j.actamat.2019.11.002 (2020).

  43. L. Liu, B.B. He, and M.X. Huang, JOM 71, 1322. https://doi.org/10.1007/s11837-019-03365-3 (2019).

  44. M.S. Mohsenzadeh, and M. Mazinani, Mater. Sci. Eng. A 673, 193. https://doi.org/10.1016/j.msea.2016.07.033 (2016).

    Article  Google Scholar 

  45. Y.G. Ko, C.W. Lee, S. Namgung, and D.H. Shin, J. Alloy. Compd. 504, S452. https://doi.org/10.1016/j.jallcom.2010.02.109 (2010).

  46. X.L. Wu, and Y.T. Zhu, Mater. Res. Lett. 5, 527. https://doi.org/10.1080/21663831.2017.1343208 (2017).

    Article  Google Scholar 

  47. N.A. Fleck, M.F. Ashby, and J.W. Hutchinson, Scripta Mater. 48, 179. https://doi.org/10.1016/S1359-6462(02)00338-X (2003).

  48. M.F. Ashby, Philos. Mag. 21, 399. https://doi.org/10.1080/14786437008238426 (1970).

    Article  Google Scholar 

  49. X.L. Liu, Q.Q. Xue, W. Wang, L.L. Zhou, P. Jiang, H.S. Ma, F.P. Yuan, Y.G. Wei, and X.L. Wu, Materialia 7, 100376. https://doi.org/10.1016/j.mtla.2019.100376 (2019).

  50. X.J. Shen, S. Tang, G.D. Wang, Q.Y. Zhang, and X.N. Wang, J. Manuf. Process. 70, 321. https://doi.org/10.1016/j.jmapro.2021.08.035 (2021).

  51. Q.Q. Lai, L. Brassart, O. Bouaziz, M. Goun , M. Verdier, G. Parry, A. Perlade, Y. Br chet, and T. Pardoen, Int. J. Plast. 80, 187. https://doi.org/10.1016/j.ijplas.2015.09.006 (2016).

  52. M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, and X.L. Wu, Proc. Natl. Acad. Sci. USA. 115, 7224. https://doi.org/10.1073/pnas.1807817115 (2018).

  53. J.X. Huang, Y. Liu, T. Xu, X.F. Chen, Q.Q. Lai, L.R. Xiao, Z.Y. Pan, B. Gao, H. Zhou, and Y.T. Zhu, Mater. Sci. Eng. A 834, 142584. https://doi.org/10.1016/j.msea.2021.142584 (2022).

    Article  Google Scholar 

  54. A. Tang, H.T. Liu, R. Chen, G.S. Liu, Q.Q. Lai, Y. Zhong, L. Wang, J. Wang, Q. Lu, and Y. Shen, Int. J. Plast. 137, 102920. https://doi.org/10.1016/j.ijplas.2020.102920 (2021).

  55. X.M. Liu, M. Nakatani, H.L. Gao, B. Sharma, H.J. Pan, Z.R. Fu, X.F. Li, K. Ameyama, and X.K. Zhu, J. Alloy. Compd. 865, 158863. https://doi.org/10.1016/j.jallcom.2021.158863 (2021).

  56. S.K. Vajpai, M. Ota, Z. Zhang, and K. Ameyama, Mater. Res. Lett. 4, 191. https://doi.org/10.1080/21663831.2016.1218965 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Number 2021YFA1200203), the Key Program of National Natural Science Foundation of China (Grant Number 51931003), the Hong Kong Research Grants Council (GRF 11214121), the National Natural Science Foundation of China (Grant Numbers 52071178, 52171118, 51901103, and 52201124), the Natural Science Foundation of Jiangsu Province (Grant Number BK20220960), the China Postdoctoral Science Foundation (Grant Number 2021M701715), Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant Number 2022ZB279), Jiangsu Key Laboratory For Light Metal Alloys (Grant Number LMA202202). We also thank the technical support from the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology. The SEM and TEM experiments were performed at the Materials Characterization and Research Center of Nanjing University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and H.Z. designed the project and guided the research. Y.L. and M.Y. conducted the experiments. L.R.X., B.G., and X.J.C. conducted the TEM experiments. M.Y. prepared the material. Y.L., J.X.M. and J.X.W. analyzed the data. Y.T.Z., H.Z. and B.G. performed the theoretical analysis. Y.L., B.G. and H.Z. wrote the manuscript. All authors contributed to the extensive discussions of the results.

Corresponding authors

Correspondence to Bo Gao or Hao Zhou.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Gao, B., Yang, M. et al. Significant Hetero-Deformation Induced Strain Hardening in a Dual-Phase Low-Carbon Steel. JOM 75, 1383–1392 (2023). https://doi.org/10.1007/s11837-022-05529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05529-0

Navigation