Skip to main content
Log in

Short-Range Order in High Entropy Alloys: Theoretical Formulation and Application to Mo-Nb-Ta-V-W System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In high-entropy alloys (HEAs), the local chemical fluctuations from disordered solute solution state into segregation, precipitation and ordering configurations are complex due to the large number of elements. In this work, the cluster expansion (CE) Hamiltonian for multi-component alloy systems is developed in order to investigate the dependence of chemical ordering of HEAs as a function of temperature dependence due to derivation of configuration entropy from the ideal solute solution. Analytic expressions for Warren–Cowley short-range order (SRO) parameters are derived for a five component alloy system. The theoretical formulation is used to investigate the evolution of the ten different SRO parameters in the MoNbTaVW and the sub-quaternary systems obtained by Monte-Carlo simulations within the combined CE and first-principles formalism. The strongest chemical SRO parameter is predicted for the first nearest-neighbor Mo-Ta pair that is in consistent agreement with high value of enthalpy of mixing in the B2 structure for this binary system. The prediction of B2 phase presence for Mo-Ta pairs in the considered bcc HEAs is reinforced by the positive contribution to the average SRO from the second nearest-neighbor shell. Interestingly, it is found that the average SRO parameter for the first and second nearest-neighbor shells of V-W pairs is also strongly negative in a comparison with the Mo-Ta pairs. This finding in the HEAs can be rationalized and discussed by the presence of the ordered-like B32 phase which has been predicted as the ground-state structure in binary bcc V-W system at the equimolar composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448

    Article  Google Scholar 

  2. E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61, p 183

    Article  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1

    Article  Google Scholar 

  4. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213

    Article  Google Scholar 

  5. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299

    Article  Google Scholar 

  6. A. Gali and E.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74

    Article  Google Scholar 

  7. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi, Scr. Mater., 2016, 113, p 106

    Article  Google Scholar 

  8. Z. Leong, J.S. Wróbel, S.L. Dudarev, R. Goodall, I. Todd, and D. Nguyen-Manh, The Effect of Electronic Structure on the Phases Present in High Entropy Alloys, Sci. Rep., 2017, 7, p 39803

    Article  ADS  Google Scholar 

  9. M. Calvo-Dahlborg, J. Cornide, J. Tobola, D. Nguyen-Manh, J.S. Wróbel, J. Juraszek, S. Jouen, and U. Dahlborg, Interplay of Electronic, Structural and Magnetic Properties as the Driving Feature of High-Entropy CoCrFeNiPd Alloys, J. Phys. D Appl. Phys., 2017, 50, p 185002

    Article  ADS  Google Scholar 

  10. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758

    Article  Google Scholar 

  11. I. Toda-Caraballo, J.S. Wróbel, S.L. Dudarev, D. Nguyen-Manh, and P.E.J. Rivera-Diaz-Del-Castillo, Interatomic Spacing Distribution in Multicomponent Alloys, Acta Mater., 2015, 97, p 156

    Article  Google Scholar 

  12. R. Kozak, A. Sologubenko, and W. Steurer, Single-Phase High-Entropy Alloys—An Overview, Z. Krist. Cryst. Mater., 2015, 230(1), p 55

    Google Scholar 

  13. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from High-Entropy Configurations in the Atomic Distributions of a Multi-Principal-Element Alloy, Nat. Commun., 2015, 6, p 5964

    Article  ADS  Google Scholar 

  14. R.E.A. Williams, B. Welk, B.D. Esser, G.B. Viswanathan, A. Genc, M. Gibson, L.J. Allen, D.W. McComb, and H.L. Fraser, Characterizing Sub-lattice Occupancies in B2 Phases in High Entropy Metallic Alloys using Atomic Resolution STEM-XEDS Mapping, Microsc. Microanal., 2014, 20, p 116

    Article  ADS  Google Scholar 

  15. N.A.P. Kiran Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy Under Ion Irradiation, Acta Mater., 2016, 113, p 230

    Article  Google Scholar 

  16. F. Granberg, K. Nordhund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys, Phys. Rev. Lett., 2016, 116, p 135504

    Article  ADS  Google Scholar 

  17. T. Egami, W. Guo, P.D. Rack, and T. Nagase, Irradiation Resistance of Multicomponent Alloys, Metall. Mater. Trans. A, 2014, 45A, p 180

    Article  ADS  Google Scholar 

  18. D. Stork, P. Agostini, J.L. Boutard, D. Buckthorpe, E. Diegele, S.L. Dudarev, C. English, G. Federici, M.R. Gilbert, S. Gonzalez, A. Ibarra, C. Linsmeier, A.L. Puma, G. Marbach, L.W. Packer, B. Raj, M. Rieth, M.Q. Tran, D.J. Ward, and S.J. Zinkle, Materials R&D for a Timely DEMO: Key Findings and Recommendations of the EU Roadmap Materials Assessment Group, Fusion Eng. Des., 2014, 89, p 1586

  19. S.J. Zinkle and J.T. Busby, Structural Materials for Fission & Fusion Energy, Mater. Today, 2009, 12, p 12

    Article  Google Scholar 

  20. D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, and S.L. Dudarev, First-Principles Models for Phase Stability and Radiation Defects in Structural Materials for Future Fusion Power-Plant Applications, J. Mater. Sci., 2012, 47, p 7385

    Article  ADS  Google Scholar 

  21. J.S. Wróbel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, and S.L. Dudarev, Phase Stability of Ternary fcc and bcc Fe-Cr-Ni Alloys, Phys. Rev. B, 2015, 91, p 024108

    Article  ADS  Google Scholar 

  22. G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, 1993, 47, p 558

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Hafner, Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium, Phys. Rev. B, 1994, 49, p 14251

    Article  ADS  Google Scholar 

  24. G. Kresse and J. Furthmller, The Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15

    Article  Google Scholar 

  25. G. Kresse and J. Furthmuller, Efficient Iterative Schemes for Ab Initio Total Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169

    Article  ADS  Google Scholar 

  26. P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953

    Article  ADS  Google Scholar 

  27. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59, p 1758

    Article  ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865

    Article  ADS  Google Scholar 

  29. A. van de Walle and G. Ceder, Automating First-Principles Phase Diagram Calculations, J. Phase Equilibria, 2002, 23, p 348

    Article  Google Scholar 

  30. A. van de Walle and M. Asta, Self-Driven Lattice-Model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams, Modell. Simul. Mater. Sci. Eng., 2002, 10, p 521

    Article  ADS  Google Scholar 

  31. A. van de Walle, Multicomponent Multisublattice Alloys, Nonconfigurational Entropy and Other Additions to the Alloy Theoretic Automated Toolkit, Calphad, 2009, 33, p 266

    Article  Google Scholar 

  32. G.L.W. Hart and R.W. Forcade, Algorithm for Generating Derivative Structures, Phys. Rev. B Condens. Matter Mater. Phys., 2008, 77, p 224115

    Article  ADS  Google Scholar 

  33. J. Sanchez, F. Ducastelle, and D. Gratias, Generalized Cluster Description of Multicomponent Systems, Phys. A, 1984, 128, p 334

    Article  MathSciNet  Google Scholar 

  34. J.W.D. Connolly and A.R. Williams, Density-Functional Theory Applied to Phase Transformations in Transition-Metal Alloys, Phys. Rev. B, 1983, 27, p 5169

    Article  ADS  Google Scholar 

  35. W.P. Huhm and M. Widom, Prediction of A2 to B2 Phase Transition in the High-Entropy Alloy Mo-Nb-Ta-W, JOM, 2013, 65, p 1772

    Article  ADS  Google Scholar 

  36. D. de Fontaine, The Number of Independent Pair-Correlation Functions in Multicomponent Systems, J. Appl. Cryst., 1971, 4, p 15

    Article  Google Scholar 

  37. A. Zunger, S.H. Wei, J. Ferreira, and J. Bernard, Special Quasirandom Structures, Phys. Rev. Lett., 1990, 65, p 353

    Article  ADS  Google Scholar 

  38. V. Blum and A. Zunger, Prediction of Ordered Structures in the bcc Binary Systems of Mo, Nb, Ta, and W from First-Principles Search of Approximately 3,000,000 Possible Configurations, Phys. Rev. B, 2005, 72, p 020104(R)

    Article  ADS  Google Scholar 

  39. M. Muzyk, D. Nguyen-Manh, K.J. Kurzydlowski, N.L. Baluc, and S.L. Dudarev, Phase Stability, Point Defects, and Elastic Properties of W-V and W-Ta Alloys, Phys. Rev. B, 2011, 84, p 104115

    Article  ADS  Google Scholar 

  40. I. Mirebeau, M. Hennion, and G. Parette, First Measurement of Short-Range-Order Inversion as a Function of Concentration in a Transition Alloy, Phys. Rev. Lett., 1984, 53, p 687

    Article  ADS  Google Scholar 

  41. F. Kormann, A.V. Ruban, and M.H.F. Sluiter, Long-Ranged Interactions in bcc NbMoTaW High-Entropy Alloys, Mater. Res. Lett., 2016, 5, p 35

    Article  Google Scholar 

  42. I. Toda-Caraballo, J.S. Wróbel, D. Nguyen-Manh, P. Perez, and P.E.J. Rivera-Diaz-del-Castillo, Simulation and Modelling in High-Entropy Alloys, JOM, 2017, submitted

  43. C. Wolverton, V. Ozolins, and A. Zunger, First-Principles Theory of Short-Range Order in Size-Mismatched Metal Alloys: Cu-Au, Cu-Ag, and Ni-Au, Phys. Rev. B, 1998, 57, p 4332

    Article  ADS  Google Scholar 

  44. M. Widom, Entropy and Diffuse Scattering: Comparison of NbTiVZr and CrMoNbV, Metall. Mater. Trans. A, 2016, 47, p 3306

    Article  Google Scholar 

  45. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698

    Article  Google Scholar 

Download references

Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053 and funding from the RCUK Energy Programme [Grant Number EP/P012450/1]. The views and opinions expressed herein do not necessarily reflect those of the European Commission. AFC acknowledges financial support from EPSRC (EP/L01680X/1) through the Materials for Demanding Environments Centre for Doctoral Training. JSW acknowledges the financial support from the Foundation of Polish Science grant HOMING (No. Homing/2016-1/12). The HOMING programme is co-financed by the European Union under the European Regional Development Fund. The simulations were partially carried out by JSW with the support of the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, under grant no GA65-14. DNM would like to acknowledge the support from Marconi-Fusion, the High Performance Computer at the CINECA headquarters in Bologna (Italy) for its provision of supercomputer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nguyen-Manh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Caballero, A., Wróbel, J.S., Mummery, P.M. et al. Short-Range Order in High Entropy Alloys: Theoretical Formulation and Application to Mo-Nb-Ta-V-W System. J. Phase Equilib. Diffus. 38, 391–403 (2017). https://doi.org/10.1007/s11669-017-0582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0582-3

Keywords

Navigation