Skip to main content
Log in

Improvement of Laser-Induction Hybrid Welding Processing on Electrochemical Corrosion Properties of S690QL Steel Weld Seam

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The electrochemical corrosion properties of S690QL steel weld seams (WSs) processed by laser-induction hybrid welding (LIHW) technology were investigated via their potentiodynamic polarization curves, corrosion surface morphologies, and element distributions, which were obtained by an electrochemical workstation, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The anode area of the LIHW WS exhibited the most significant passivation. With increasing inductor output power, the secondary passivation phenomenon was enhanced, and the degree of pitting in the corrosion surface increased. Owing to the reduced number of grain boundaries, increased ferrite content, and dense corrosion layer, even though the corrosion current density and corrosion velocity of the LIHW WS increased, the corrosion resistance still increased. In addition, Cr, Ti, and Mo caused the corrosion potential to shift positively. Based on comprehensive analysis, it was concluded that the corrosion resistance of the LIHW WS was improved. This ability was enhanced by the increasing the inductor output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J.R. Zou, J.M. Qian, and H.Q. Li, Jiangsu Ship 28(03), 35 (2011).

  2. A. Cheng, and N. Chen, Eng Fail Anal 84, 262. (2018).

    Article  Google Scholar 

  3. A. Vinoth Jebaraj, L. Ajaykumar, C. R. Deepak, and K. V. V. Aditya, J Adv Res 8, 3, 183 (2017).

  4. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, and Z.Y. Cui, Corros Sci 100, 627. (2015).

    Article  Google Scholar 

  5. Q.H. Han, X. Wang, and Y. Lu, Corros Sci 132, 194. (2018).

    Article  Google Scholar 

  6. W. Zhao, and D. Kong, Appl Surf Sci 481, 161. (2019).

    Article  Google Scholar 

  7. E. Rocca, H. Faiz, P. Dillmann, D. Neff, and F. Mirambet, Electrochim Acta 316, 219. (2019).

    Article  Google Scholar 

  8. J. Yang, G.F. Xi, and X.Q. Fan, Appl. Mech. Mater. 80–81, 3. (2011).

    Google Scholar 

  9. S. Gkatzogiannis, J. Weinert, I. Engelhardt, P. Knoedel, and T. Ummenhofer, Int J Fatigue 126, 90. (2019).

    Article  Google Scholar 

  10. X.X. Ma, Y.L. Ma, S.Q. Xing, Z.Y. Chen, H.C. Lu, and H.Z. He, Welded Pipe & Tube 32(12), 22. (2014).

    Google Scholar 

  11. R. Oyyaravelu, P. Kuppan, and N. Arivazhagan, J Adv Res 7(3), 463. (2016).

    Article  Google Scholar 

  12. G. Çam, Ç. Yeni, S. Erim, V. Ventzke, and M. Koçak, Sci Technol Weld Joi 3(4), 177. (1998).

    Article  Google Scholar 

  13. G. Çam, E. S, Y. Ç, and M. Koçak Weld. J. Res. Suppl. 78, 6, 193s (1999).

  14. N. Kashaev, V. Ventzke, and G. Çam, J Manuf Process 36, 571. (2018).

    Article  Google Scholar 

  15. G. Çam, M. Koçak, and J.F.D. Santos, Weld World 43(2), 13. (1999).

    Google Scholar 

  16. J.D. Santos, G. Çam, F. Torster, A. Insfran, and M. Koçak, Weld World 44(6), 42. (2000).

    Google Scholar 

  17. G. Çam, and G. İpekoğlu, Int. J. Adv. Manuf. Technol. 91(5–8), 1851. (2017).

    Article  Google Scholar 

  18. G. Çam, and M. Koçak, Int Mater Rev 43(1), 1 (1998).

    Article  Google Scholar 

  19. G. Çam, and M. Koçak, Sci. Technol. Weld. Joining 3(3), 105. (1998).

    Article  Google Scholar 

  20. G. Çam, A. Fischer, R. Ratjen, J. F. Santos and M. Koçak, "Properties of laser beam welded superalloys Inconel 625 and 718", In: Proc. of 7th European Conference on Laser Treatment of Materials, ECLAT '98, B. L. Mordike, Ed. (Werkstoff-Informationsgeselschaft mbH,Frankfurt, Hannover, Germany, 1998), p. 333.

  21. Von Strombeck A, G. Çam, J. F. Santos, V. Ventzke and M. Koçak, "A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys", In: Proc. of the TMS 2001 Annual Meeting Aluminum, Automotive and Joining, J. G. K. A. S. K. Das, Ed. (TMS, Warrendale, PA, USA, (New Orleans, Louisiana, USA, 2001), p. 249.

  22. S. Riekehr, G. Çam, J. F. Santos, M. Koçak, and R. M. Klein, "Investigation on fracture toughness of laser beam welded steels", In: Proc. of 7th European Conference on Laser Treatment of Materials (ECLAT '98), B. L. Mordike, Ed. (Werkstoff-Informationsgeselschaft mbH, Frankfurt, Hannover, Germany, 1998), p. 405.

  23. G. Turichin, M. Kuznetsov, I. Tsibulskiy, A. Firsova, G. Turichin, M. Kuznetsov, I. Tsibulskiy, A. Firsova, G. Turichin, and M. Kuznetsov, Phys. Procedia 89, 156–163. (2017).

    Article  Google Scholar 

  24. H. Pinto, and A.R.K. Axel, Mater Technol 80(1), 39–49. (2009).

    Google Scholar 

  25. G.K. Ahiale, and Y. Oh, Mater. Sci. Eng., A 597, 342–348. (2014).

    Article  Google Scholar 

  26. Y.F. Sun, J.M. Shen, Y. Morisada, and H. Fujii, Mater. Des. 1980–2015 (54), 450–457. (2014).

    Article  Google Scholar 

  27. A.I. Álvarez, V. Cid, G. Pena, J. Sotelo, and D. Verdera, assisted friction stir welding of carbon steel: Use of induction and laser as preheating techniques (John Wiley & Sons Inc, Hoboken, NJ, USA, 2013), pp 117–126.

    Google Scholar 

  28. A. Ikram, N. Arif, and H. Chung, J Mater Process Tech 231, 162–170. (2016).

    Article  Google Scholar 

  29. L. Li, G. Mi, and C. Wang, J Manuf Process 43, 276–291. (2019).

    Article  Google Scholar 

  30. L. Li, G. Mi, X. Zhang, L. Xiong, Z. Zhu, and C. Wang, Optics Laser Technol. 119, 105606. (2019).

    Article  Google Scholar 

  31. L. Li, J. Zheng, and C. Wang, Optics Laser Technol. 126, 106101. (2020).

    Article  Google Scholar 

  32. L. Gong, Q. Xing, and H. Wang, Anti-Corros Method M 63(4), 295–300. (2016).

    Article  Google Scholar 

  33. T. Jun, L.I. Guo-Ming, and C. Shan, Equip. Environ. Eng. 13(2), 110–115. (2016).

    Google Scholar 

Download references

Acknowledgements

We would like to express our deep gratitude to the Analysis and Test Center of HUST (Huazhong University of Science and Technology) and the State Key Laboratory of Material Processing and Die & Mould Technology of HUST for their friendly cooperation. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This study was funded by the Elite Program research support fund of Shandong University of Science and Technology [Grant Number 11040025401], the National Natural Science Foundation of China [Grant Number 51705173] and Natural Science Foundation of Shandong Province [Grant Number ZR2020KE0].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lou, S. & Wang, C. Improvement of Laser-Induction Hybrid Welding Processing on Electrochemical Corrosion Properties of S690QL Steel Weld Seam. JOM 74, 3607–3615 (2022). https://doi.org/10.1007/s11837-022-05281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05281-5

Navigation