Skip to main content
Log in

A Novel Method of Extracting Iron from High-Iron Red Mud and Preparing Low-Carbon Cement Clinker from Tailings

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel method of extracting iron from high-iron red mud and preparing low-carbon cement clinker from tailings was proposed. Thermodynamics of smelting reduction were calculated. The effects of different conditions on iron recovery were investigated systematically. Properties of cement samples prepared from water quenched slag were analyzed. Results showed that increasing temperature, Na2O content and C/S and decreasing A/S appropriately were beneficial to increase the liquid content in slag. Iron recovery was 97.6% under optimal conditions, and the obtained metal met the industrial standard of pig iron for steelmaking. Vitreous content in water quenched slag was 99%, and its pozzolanic activity was comparable to that of S95 grade ore powder. Due to energy consumption and CO2 emission from decomposition of limestone in calcination process of cement clinker reducing significantly, the CO2 emission was reduced to about 400 kg per ton of cement clinker based on the 50% doping amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.T. Liu, Y. Liu, G.Z. Lv, and T.A. Zhang, JOM 72, 970 (2020).

    Article  Google Scholar 

  2. W.C. Liu, X.Q. Chen, W.X. Li, Y.F. Yu, and K. Yan, J. Clean. Prod. 84, 606 (2014).

    Article  Google Scholar 

  3. F.Y. Meng, X.S. Li, P.P. Wang, F. Yang, D.Q. Liang, F. Gao, C.L. He, and T.Z. Wei, JOM 72, 816 (2020).

    Article  Google Scholar 

  4. S.G. Xue, Y.J. Wu, Y.W. Li, X.F. Kong, F. Zhu, H. William, X.F. Li, and Y.Z. Ye, J. Cent. South Univ. 26, 268 (2019).

    Article  Google Scholar 

  5. T. Kinnarinen, B. Lubieniecki, L. Holliday, J.J. Helsto, and A. Hakkinen, Int. J. Miner. Process. 141, 20 (2015).

    Article  Google Scholar 

  6. Z.B. Liu, and H.X. Li, Hydrometallurgy 155, 29 (2016).

    Article  Google Scholar 

  7. W.M. Xie, F.P. Zhou, J.Y. Liu, X.L. Bi, Z.J. Huang, Y.H. Li, D.D. Chen, H.Y. Zou, and S.Y. Sun, J. Clean. Prod. 243, 118624 (2020).

    Article  Google Scholar 

  8. Y.X. Wang, T.A. Zhang, G.Z. Lyu, F.F. Guo, W.G. Zhang, and Y.H. Zhang, J. Clean. Prod. 188, 456 (2018).

    Article  Google Scholar 

  9. F. Gao, J.H. Zhang, X.J. Deng, K.T. Wang, C.L. He, X.S. Li, and Y.Z. Wei, JOM 71, 2936 (2019).

    Article  Google Scholar 

  10. B. Das, and K. Mohanty, Renew. Energy 143, 1791 (2019).

    Article  Google Scholar 

  11. Y. Li, J. Wang, X. Wang, B. Wang, and Z. Luan, Phys. C Supercond. 471, 91 (2011).

    Article  Google Scholar 

  12. Y. Yang, X.W. Wang, M.Y. Wang, H.G. Wang, and P.F. Xian, Hydrometallurgy 157, 239 (2015).

    Article  Google Scholar 

  13. C. Cardenia, E. Balomenos, and D. Panias, J. Sustain. Metall. 5, 9 (2018).

    Article  Google Scholar 

  14. Y.H. Guo, J.J. Gao, H.J. Xu, K. Zhao, and X.F. Shi, J. Iron Steel Res. Int. 20, 24 (2013).

    Article  Google Scholar 

  15. K. Wang, Y. Liu, T.A. Zhang, X.F. Li, and X. Chen, Mater. Res. Express 7, 126514 (2020).

    Article  Google Scholar 

  16. Y.X. Wang, T.A. Zhang, Y.H. Zhang, G.Z. Lyu, and W.G. Zhang, Miner. Eng. 138, 139 (2019).

    Article  Google Scholar 

  17. G.Z. Lu, T.A. Zhang, X.F. Zhu, Y. Liu, Y.X. Wang, F.F. Guo, Q.Y. Zhao, and C.Z. Zheng, JOM 66, 1616 (2014).

    Article  Google Scholar 

  18. R.B. Li, T.A. Zhang, Y. Liu, G.Z. Lv, and L.Q. Xie, J. Hazard. Mater. 316, 94 (2016).

    Article  Google Scholar 

  19. G.Z. Lu, T.A. Zhang, C.Z. Zheng, X.F. Zhu, W.G. Zhang, and Y.X. Wang, Hydrometallurgy 174, 97 (2017).

    Article  Google Scholar 

  20. G.T. Liu, Y. Liu, and T.A. Zhang, Hydrometallurgy 189, 105123 (2019).

    Article  Google Scholar 

  21. G.Z. Lu, T.A. Zhang, L.N. Ma, Y.X. Wang, W.G. Zhang, Z.M. Zhang, and L. Wang, Hydrometallurgy 188, 248 (2019).

    Article  Google Scholar 

  22. X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lu, W.G. Zhang, and C. Wang, Chin. J. Chem. Eng. 23, 1634 (2015).

    Article  Google Scholar 

  23. X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lv, and W.G. Zhang, Int. J. Min. Met. Mater. 23, 257 (2016).

    Article  Google Scholar 

  24. Y.X. Wang, T.A. Zhang, Y.H. Zhang, G.Z. Lv, and W.G. Zhang, JOM 71, 2505 (2019).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (U1710257, U1702253, U1903129) and the National Key Research and Development Plan (2017YFC0210403-04, 2017YFC0210404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, Y., Dou, Z. et al. A Novel Method of Extracting Iron from High-Iron Red Mud and Preparing Low-Carbon Cement Clinker from Tailings. JOM 74, 2750–2759 (2022). https://doi.org/10.1007/s11837-022-05264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05264-6

Navigation