Skip to main content
Log in

Recovery of Scandium from Bauxite Residue by Selective Sulfation Roasting with Concentrated Sulfuric Acid and Leaching

  • Cleaner Manufacturing of Critical Metals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The recovery of scandium from bauxite residue was studied by selective sulfation roasting and water leaching. The sulfation roasting process of bauxite residue with concentrated sulfuric acid was investigated by XRD, SEM and TG-DSC techniques. The results showed that metal oxides in bauxite residue were firstly transformed into their respective sulfates during the sulfation roasting process, while Si was in the form of macromolecular silicic acid. The sulfates of the titanium, iron (III) and aluminum started to decompose to their respective oxides when the roasting temperature was 544°C, 683°C and 716.6°C, respectively. The scandium sulfate was stable when the roasting temperature was below 850°C. About 90% of the scandium can be recovered under the optimum conditions: roasting temperature of 850°C, roasting time of 60 min, concentrated sulfuric acid to bauxite residue rate of 1 ml/g, leaching temperature of 60°C, leaching time of 40 min and liquid to initial bauxite residue ratio of 8:1 ml/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Power, M. Gräfe, and C. Klauber, Hydrometallurgy 108, 33 (2011).

    Article  Google Scholar 

  2. R.K. Paramguru, P.C. Rath, and V.N. Misra, Extr. Metall. Rev. Int. J. 26, 1 (2005).

    Google Scholar 

  3. K. Zhou, C. Teng, X. Zhang, C. Peng, and W. Chen, Hydrometallurgy 182, 57 (2018).

    Article  Google Scholar 

  4. Y. Liu and R. Naidu, Waste Manage. 34, 2662 (2014).

    Article  Google Scholar 

  5. A.S. Verma, N.M. Suri, and S. Kant, Waste Manag. Res. 35, 999 (2017).

    Article  Google Scholar 

  6. Z. Liu and H. Li, Hydrometallurgy 155, 29 (2015).

    Article  Google Scholar 

  7. W. Wang, Y. Pranolo, and C. Cheng, Hydrometallurgy 108, 100 (2011).

    Article  Google Scholar 

  8. C. Liu, L. Chen, J. Chen, D. Zou, Y. Deng, and D. Li, J. Rare Earth. 37, 1002 (2019).

    Article  Google Scholar 

  9. R.P. Narayanan, L.C. Ma, N.K. Kazantzis, M.H. Emmert, and A.C.S. Sustain, Chem. Eng. 6, 5333 (2018).

    Google Scholar 

  10. L. Zhu, Y. Liu, J. Chen, and W. Liu, J. Appl. Polym. Sci. 120, 3284 (2011).

    Article  Google Scholar 

  11. C.R. Borra, Y. Pontikes, K. Binnemans, and T.V. Gerven, Mine Eng. 76, 20 (2015).

    Article  Google Scholar 

  12. G. Li, Q.Y e, B. Deng, J. Luo, M. Rao, Z. Peng, T. Jiang, Hydrometallurgy 176, 62 (2018).

    Article  Google Scholar 

  13. Z. Liu, Y. Zong, H. Li, D. Jia, and Z. Zhao, J. Rare Earth. 35, 896 (2017).

    Article  Google Scholar 

  14. W. Wang, Y. Pranolo, and C.Y. Cheng, Sep. Purif. Technol. 108, 96 (2013).

    Article  Google Scholar 

  15. W. Wang and C.Y. Cheng, J. Chem. Technol. Biotechnol. 86, 1237 (2011).

    Article  Google Scholar 

  16. D.I. Smirnov and T.V. Molchanova, Hydrometallurgy 45, 249 (1997).

    Article  Google Scholar 

  17. J. Roosen, S.V. Roosendael, C.R. Borra, T.V. Gerven, S. Mullens, and K. Binnemans, Green Chem. 18, 2005 (2016).

    Article  Google Scholar 

  18. N. Zhang, H.X. Li, and X.M. Liu, Rare Met. 35, 887 (2016).

    Article  Google Scholar 

  19. C.R. Borra, J. Mermans, B. Blanpain, Y. Pontikes, K. Binnemans, and T.V. Gerven, Miner. Eng. 92, 151 (2016).

    Article  Google Scholar 

  20. J. Vind, A. Malfliet, C. Bonomi, P. Paiste, I.E. Sajó, B. Blanpain, A.H. Tkaczyk, V. Vassiliadou, and D. Panias, Miner. Eng. 123, 35 (2018).

    Article  Google Scholar 

  21. M. Chassé, W.L. Griffin, S.Y. O’Reilly, and G. Calas, Geochem. Perspect. Let. 3, 105 (2017).

    Article  Google Scholar 

  22. C. Levard, D. Borschneck, O. Grauby, J. Rose, and J.-P. Ambrosi, Geochem. Perspect. Lett. 9, 16 (2018).

    Article  Google Scholar 

  23. G.Z. Deng, Titanium Metallurgy (Beijing: Mtallurgyical Industry Press, 2010), pp. 266–316.

    Google Scholar 

  24. Z.J. Lv and X.J. Zhai, Scandium Metallurgy (Beijing: Chemistry Industry Press, 2010), pp. 2–13.

    Google Scholar 

  25. A.B. Dai, J. Nanjing univ. (Natur. Sci. Ed.) 3, 1 (1963).

    Google Scholar 

  26. T.W. Zerda, I. Artaki, and J. Jonas, J. Non-Cryst. Solids 81, 363 (1986).

    Article  Google Scholar 

  27. D.J. Tobler, S. Shaw, and L.G. Benning, Geochim. Cosmochim. Ac. 73, 5377 (2009).

    Article  Google Scholar 

  28. K.H. Stern, High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions (Florida: CRC Press, 2000).

    Book  Google Scholar 

  29. H. Tagawa, Thermochim. Acta 80, 23 (1984).

    Article  Google Scholar 

  30. J.G. Li, T. Ikegami, and T. Mori, J. Am. Ceram. Soc. 88, 817 (2005).

    Article  Google Scholar 

  31. G. Li, H. Cheng, S. Chen, X. Lu, Q. Xu, and C. Lu, Metall. Mater. Trans. B 49, 1136 (2018).

    Article  Google Scholar 

  32. D. Lindberg, R. Backman, and P. Chartrand, J. Chem. Thermodyn. 38, 1568 (2006).

    Article  Google Scholar 

  33. Q. Li, J.-J. Hu, Y.-B. Yang, B. Xu, and T. Jiao, Mechanism of Na2SO4on refractory gold concentrate at roasting pretreatment (Cham: Springer, 2016), pp. 59–70.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi (Nos. 2017GXNSFAA198176, 2017GXNSFAA198206), and Science and Technology Major Project of Guangxi Province (Nos. AA17204100, AA18118030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Li, X., Wang, P. et al. Recovery of Scandium from Bauxite Residue by Selective Sulfation Roasting with Concentrated Sulfuric Acid and Leaching. JOM 72, 816–822 (2020). https://doi.org/10.1007/s11837-019-03931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03931-9

Navigation