Skip to main content
Log in

Investigating the Effect of Reinforcing Particles Size and Content on Tensile and Fatigue Properties of Heat-Treated Al7075-SiC Composites Fabricated by the Stir Casting Method

  • Advances in Characterization of Functional Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metal matrix composites with superior mechanical and fatigue properties are in great industrial demand. In the present study, a two-step stir casting method and T6 heat treatment were implemented to fabricate Al7075-SiC composites. SiC particles of varying content and size (nano, submicron, and micron) were added to the Al7075 matrix. Tensile strength and fatigue properties of the fabricated composites were then evaluated. Results showed that addition of SiC particles into the matrix increased tensile and fatigue strength. In contrast, the elongation of samples decreased. Samples reinforced with nanoparticles showed better tensile and fatigue properties compared with the other composites (submicron and micron reinforcement). It was observed that Al7075 reinforced with 1% weight percentage of SiC nanoparticles improved the ultimate tensile strength and fatigue strength of pure Al7075 samples by 21.33% and 66%, respectively. However, further addition of reinforcing particles above a certain limit resulted in a decrease in tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Bhaduri, Mechanical Properties and Working of Metals and Alloys (Springer Singapore, Singapore, 2018), pp 317–371.

    Google Scholar 

  2. K.R. Kashyzadeh, S.S. Rahimian Koloor, M. Omidi Bidgoli, M. Petrů, and A. Amiri Asfarjani, Polymers 13, 483 (2021).

    Article  Google Scholar 

  3. S. Setia and S.R. Chauhan, Silicon 13, 4681–4701 (2021).

    Article  Google Scholar 

  4. T. Feister, H. Kim, A. Gwinn, T. Schiller, and M. Austin, In: IOP Conference Series: Materials Science and Engineering, (IOP Publishing, 2018), p. 012024.

  5. J. Xia, J.J. Lewandowski, and M.A. Willard, Mater. Sci. Eng. A 770, 138518 (2020).

    Article  Google Scholar 

  6. M. Karthik, C. Honnaiah, S.A. Prasad and M. Srinath, In: IOP Conference Series: Materials Science and Engineering, (IOP Publishing, 2018), p. 012068.

  7. D. Davidson, Eng. Fract. Mech. 33, 965 (1989).

    Article  Google Scholar 

  8. N. Chawla, J. Jones, C. Andres, and J. Allison, Metall. Mater. Trans. A. 29, 2843 (1998).

    Article  Google Scholar 

  9. J.N. Hall, J.W. Jones, and A.K. Sachdev, Mater. Sci. Eng. A 183, 69 (1994).

    Article  Google Scholar 

  10. Z. Chen, and K. Tokaji, Mater. Lett. 58, 2314 (2004).

    Article  Google Scholar 

  11. S. Shin, and D. Bae, Compos. B Eng. 134, 61 (2018).

    Article  Google Scholar 

  12. C. Kaynak, and S. Boylu, Mater. Des. 27, 776 (2006).

    Article  Google Scholar 

  13. G. Majzoobi, H. Bakhtiari, A. Atrian, M. Pipelzadeh, and S. Hardy, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 230, 375 (2016).

    Google Scholar 

  14. A. Mamoon and A. Al-Jaafari, In IOP Conference Series: Materials Science and Engineering, (IOP Publishing: 2020), p. 012159.

  15. P.R.M. Raju, S. Rajesh, K.S.R. Raju, and V.R. Raju, Mater. Today Proc. 4, 3188 (2017).

    Article  Google Scholar 

  16. J. Schijve, Fatigue of Structures and Materials (Springer Science & Business Media, New York, 2001).

    MATH  Google Scholar 

  17. S. Beden, S. Abdullah, and A. Ariffin, Eur. J. Sci. Res. 28, 364 (2009).

    Google Scholar 

  18. Annual Book of ASTM Standards, Sect. Three Met. Test Methods Anal. Proced 3, 628 (2002).

    Google Scholar 

  19. J.O. Almen, and P.H. Black, Residual Stresses and Fatigue in Metals (McGraw-Hill, New York, 1963).

    Google Scholar 

  20. O.J. Horger and J. Maulbetsch, J. Appl. Mech. 3(4), A147–A148 (1936).

    Article  Google Scholar 

  21. A. Sanaty-Zadeh, Mater. Sci. Eng. A 531, 112 (2012).

    Article  Google Scholar 

  22. T. Sritharan, L. Chan, L. Tan, and N. Hung, Mater. Charact. 47, 75 (2001).

    Article  Google Scholar 

  23. M. Malaki, A.F. Tehrani, and B. Niroumand, Ceram. Int. 46(15), 23326–23336 (2020).

    Article  Google Scholar 

  24. C. Goh, J. Wei, L. Lee, and M. Gupta, Acta Mater. 55, 5115 (2007).

    Article  Google Scholar 

  25. C. Goh, J. Wei, L. Lee, and M. Gupta, Compos. Sci. Technol. 68, 1432 (2008).

    Article  Google Scholar 

  26. S.K. Soni, and B. Thomas, Mater. Res. Express 6, 1265f3 (2020).

    Article  Google Scholar 

  27. S.K. Soni, D. Ganatra, P. Mendiratta, C. Reddy, and B. Thomas, Met. Mater. Int. 1 (2021).

  28. P. Agarwal, A. Kishore, V. Kumar, S.K. Soni, and B. Thomas, Eng Res Express 1, 015004 (2019).

    Article  Google Scholar 

  29. M. Sijo, and K. Jayadevan, Procedia Technol. 24, 379 (2016).

    Article  Google Scholar 

  30. J. Hashim, L. Looney, and M. Hashmi, J. Mater. Process. Technol. 119, 324 (2001).

    Article  Google Scholar 

  31. J. Hashim, L. Looney, and M.S.J. Hashmi, J. Mater. Process. Technol. 119, 329 (2001).

    Article  Google Scholar 

  32. M. Singla, D.D. Dwivedi, L. Singh, and V. Chawla, J. Miner. Mater. Charact. Eng. 8, 455 (2009).

    Google Scholar 

  33. P.K. Jain, P. Baredar, and S. Soni, Mater. Today Proc. 26, 2740 (2020).

    Article  Google Scholar 

  34. (ASM).

  35. J. LLorca, Progress Mater. Sci. 47, 283–353 (2002).

    Article  Google Scholar 

  36. S.H. Anand and N. Venkateshwaran, Biomass Convers. Biorefinery, 1 (2021).

  37. V.K. Dwivedi, S.P. Dwivedi, and R. Yadav, Adv. Mater. Process. Technol. 1 (2020). https://doi.org/10.1080/2374068X.2020.1829955

  38. A. Standard, West Conshohocken: ASTM International (2016).

  39. P. Raghuvaran, J. Baskaran, C. Aagash, A. Ganesh, and S.G. Krishna, Mater. Today Proc. 45, 1914 (2021).

    Article  Google Scholar 

  40. A. Atrian, G. Majzoobi, M. Enayati, and H. Bakhtiari, Adv. Powder Technol. 26, 73 (2015).

    Article  Google Scholar 

  41. A. Slipenyuk, V. Kuprin, Y. Milman, V. Goncharuk, and J. Eckert, Acta Mater. 54, 157 (2006).

    Article  Google Scholar 

  42. J. Hashim, L. Looney, and M. Hashmi, J. Mater. Process. Technol. 92, 1 (1999).

    Article  Google Scholar 

Download references

Funding

The authors declare that this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinping Yu or Kamran Asemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Bakhtiari, H., Zhou, J. et al. Investigating the Effect of Reinforcing Particles Size and Content on Tensile and Fatigue Properties of Heat-Treated Al7075-SiC Composites Fabricated by the Stir Casting Method. JOM 74, 1859–1869 (2022). https://doi.org/10.1007/s11837-022-05248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05248-6

Navigation