Skip to main content
Log in

Intensive Leaching of Red Phosphor Rare Earth Metals from Waste Fluorescent Lamp: Parametric Optimization and Kinetic Studies

  • Recovery of Rare Earth and Critical Metals from Unconventional Sources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Waste fluorescent lamps containing a significantly high quantity of rare earth metals have great potential to be an unconventional source of critical metals if exploited efficiently for resource recovery. Therefore, the present study dealt with the selective leaching of red phosphor rare earths from waste fluorescent lamps. The parametric effects of the acid media and their concentrations, addition of H2O2, pulp density, temperature, and time were studied. The results revealed that 2.0 M HCl with 5 vol.% H2O2 yielded 100% yttrium and more than 95% europium compared to only 92% and 96% yttrium and 89% and 91% europium while using H2SO4 and HNO3, respectively. The green phosphor compounds Ce0.67Tb0.33MgAl11O19 and (La0.65Ce0.15Tb0.2)PO4 were undissolved in a residual mass that can be handled separately. Kinetics data followed logarithmic rate law, and the chemically-controlled mechanism was indicated by the values of apparent activation energy (i.e., Ea(Y), 87.8 kJ/mol and Ea(Eu), 54.1 kJ/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Ilyas, H. Kim, and R.R. Srivastava, Sep. Purif. Technol. 254, 117634 (2021).

    Article  Google Scholar 

  2. F. Habashi, Extractive metallurgy of rare earths. Can. Metall. Quart. 52, 224 (2013).

    Article  Google Scholar 

  3. S. Ilyas, H. Kim, R.R. Srivastava, and S. Choi, J. Clean. Prod. 278, 123435 (2021).

    Article  Google Scholar 

  4. G. Prameswara, I. Trisnawati, P. Mulyono, A. Prasetya, and H.T.B.M. Petrus, JOM 73, 988 (2021).

    Article  Google Scholar 

  5. G. Hearty, “Rare earths: next element in the trade war?” (Center for Strategic and International Studies, 2019). https://www.csis.org/analysis/rare-earths-next-element-trade-war#:%7e:text%3dWith%20the%20trade%20war%20having%2cnext%20salvo%20in%20the%20conflict.%26text%3dA1%253A%20Rare%252Dearth%20elements%20are%2cwhich%20possess%20similar%20chemical%20properties. Accessed 29 Sept 2021

  6. S. Ilyas, H. Kim, and R.R. Srivastava, Sustainable Urban Mining of Precious Metals (CRC, Boca Raton, 2021).

    Book  Google Scholar 

  7. J.-H. Lee, and J. Woo, Sustainability 12, 10191 (2020).

    Article  Google Scholar 

  8. The EU Green Deal – a roadmap to sustainable economie (Swich2green), https://www.switchtogreen.eu/the-eu-green-deal-promoting-a-green-notable-circular-economy/. Accessed 29 Sept 2021

  9. R. Galvin, and N. Healy, Energy Res. Soc. Sci. 67, 101529 (2020).

    Google Scholar 

  10. K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert, J. Clean. Prod. 51, 1 (2013).

    Article  Google Scholar 

  11. Memoria anual 2016 (Ambilamp, 2017), https://ambilamp.es/sites/default/files/memoria-actividad/files/memoria2016-ambilamp.pdf. Accessed 29 Sept 2021

  12. L. Yurramendi, L. Gijsemans, F. Forte, J.L. Aldana, C. del Río, and K. Binnemans, Hydrometallurgy 187, 38 (2019).

    Article  Google Scholar 

  13. A. Miskufova, A. Kochmanova, T. Havlik, H. Horvathova, and P. Kuruc, Hydrometallurgy 176, 216 (2018).

    Article  Google Scholar 

  14. N. Shukla, and N. Dhawan, JOM 73, 1090 (2021).

    Article  Google Scholar 

  15. Q. Tan, J. Li, and X. Zeng, Crit. Rev. Environ. Sci. Technol. 45, 749 (2015).

    Article  Google Scholar 

  16. M. Tanaka, K. Koyama, H. Narita, and T. Oishi, Recycling valuable metals via hydrometallurgical routes, in Design for Innovative Value Towards a Sustainable Society. ed. by M. Matsumoto, Y. Umeda, K. Masui, and S. Fukushige (Springer, Amsterdam, 2012), p. 507.

    Chapter  Google Scholar 

  17. A. Tuncuk, V. Stazi, A. Akcil, E.Y. Yazici, and H. Deveci, Miner. Eng. 25, 28 (2012).

    Article  Google Scholar 

  18. C.H. Yan, J.T. Jia, C.S. Liao, S. Wu, and G.X. Xu, Tsinghua. Sci. Technol. 11, 241 (2006).

    Google Scholar 

  19. S. Zielinski, and A. Szczepanik, Hydrometallurgy 33, 219 (1993).

    Article  Google Scholar 

  20. R. Shimizu, K. Sawada, Y. Enokida, and I. Yamamoto, J. Supercrit. Fluids 33, 235 (2005).

    Article  Google Scholar 

  21. Z. Hubicki, and M. Olszak, J. Chromatogr. A 955, 257 (2002).

    Article  Google Scholar 

  22. H.Y. Liu, J. Chen, and D.Q. Li, Sep. Sci. Technol. 47, 223 (2012).

    Article  Google Scholar 

  23. B.J. Beaudry, and K.A. Gschneidner Jr., Chapter 2, preparation and basic properties of the rare earth metals, in Handbook on the Physics and Chemistry of Rare Earths. ed. by K.A. Gschneidner Jr., and L. Eyring (Elsevier, New York, 1978), p. 173.

    Google Scholar 

  24. C.H. Huang, W. Wang, Y.J. Liu, and J.G. Wu, Inorganic Chemistry Series Volume VII: Scandium, Rare Earth Elements (Science Press, Beijing, 1992).

    Google Scholar 

  25. B.B. Mishra, N. Devi, and K. Sarangi, Miner. Eng. 136, 43 (2019).

    Article  Google Scholar 

  26. L.V. Resende, and C.A. Morais, Miner. Eng. 70, 217 (2015).

    Article  Google Scholar 

  27. S. Ilyas, H. Kim, and R.R. Srivastava, JOM 73, 19 (2021).

    Article  Google Scholar 

  28. C.M. Lousada, M. Yang, K. Nilsson, and M. Jonsson, J. Mol. Catal. A-Chem. 379, 178 (2013).

    Article  Google Scholar 

  29. V. Diesen, and M. Jonsson, J. Adv. Oxid. Technol. 16, 16 (2013).

    Google Scholar 

  30. C.M. Lousada, A.J. Johansson, T. Brinck, and M. Jonsson, J. Phys. Chem. C 116, 9533 (2012).

    Article  Google Scholar 

  31. R. Sattar, S. Ilyas, S. Kousar, A. Khalid, M. Sajid, and S.I. Bhukhari, Environ. Eng. Res. 25, 88 (2020).

    Article  Google Scholar 

  32. S. Ilyas, R.R. Srivastava, H. Kim, and H.A. Cheema, Sep. Purif. Technol. 248, 117029 (2020).

    Article  Google Scholar 

  33. F. Habashi, Principles of Extractive Metallurgy: Hydrometallurgy, Gordon and Breach, vol I. (Science Publishers, New York, 1969).

    Google Scholar 

  34. O. Levenspiel, Chemical Reaction Engineering, 3rd edn. (Wiley, New York, 1999).

    Google Scholar 

  35. K. Chabhadiya, R.R. Srivastava, and P. Pathak, J. Environ. Chem. Eng. 9, 105232 (2021).

    Article  Google Scholar 

  36. H. Munir, R.R. Srivastava, H. Kim, S. Ilyas, M.K. Khosa, and B. Yameen, J. Chem. Technol. Biotechnol. 95, 2286 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Project Nos. 2020R1A6A3A13073210 and 2020R1I1A1A01074249) and by the Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2019H1D3A2A02101993). The authors are thankful to Dr. Dipti Tanna for the language editing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Ilyas, S. & Kim, H. Intensive Leaching of Red Phosphor Rare Earth Metals from Waste Fluorescent Lamp: Parametric Optimization and Kinetic Studies. JOM 74, 1054–1060 (2022). https://doi.org/10.1007/s11837-021-05112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05112-z

Navigation