Skip to main content
Log in

Wear and Corrosion Behavior of Al7075 Matrix Hybrid Composites Produced by Friction Stir Processing: Optimization of Process Parameters

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Despite the high strength-to-weight ratio, the poor tribological behavior and sea water corrosion performance of aluminum alloy limit its engineering applications. In this investigation, an attempt is made to obtain good wear and corrosion resistance by fabricating MoS2 and CeO2 reinforced aluminum 7075 matrix hybrid composites through friction stir processing. The microstructural observation suggests intermetallic free uniformly distributed composites are formed. The specific wear and corrosion rates of the fabricated composites are analyzed. The reason behind variation of the responses is investigated. The processing conditions such as rotational speed, traverse speed, tilt angle and mixing ratio of reinforcement powder are optimized for low specific wear rate and low corrosion rate using Taguchi optimization method. The effects of the processing conditions on individual responses are also investigated. Gray relation approach is also adopted for optimizing the processing conditions while considering equal importance of both the output responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.K. Lim, T. Shibayanagi, and A.P. Gerlich, Mater. Sci. Eng. A 507, 194. (2009).

    Article  Google Scholar 

  2. M. Bahrami, K. Dehghani, and M.K.B. Givi, Mater. Des. 53, 217. (2014).

    Article  Google Scholar 

  3. R. Hashemi, and G. Hussain, Wear 324–325, 45. (2015).

    Article  Google Scholar 

  4. H.G. Rana, V.J. Badheka, and A. Kumar, Proc. Technol. 23, 519. (2016).

    Article  Google Scholar 

  5. S. K. Coburn, in Sel Mater Serv Env. (Source B. Ser.) (1987), pp. 318–324.

  6. C.E. Prema, S. Suresh, G. Ramanan, and M. Sivaraj, Mater. Res. Express 7, 016524. (2020).

    Article  Google Scholar 

  7. S. Suresh, G.H. Gowd, and M.L.S. Devakumar, J. Bio-Tribo-Corros. 4, 1. (2018).

    Article  Google Scholar 

  8. V. Shrivastava, P. Singh, G.K. Gupta, S.K. Srivastava, and I.B. Singh, J. Alloys Compd. 857, 157590. (2021).

    Article  Google Scholar 

  9. S.A. Hosseini, K. Ranjbar, R. Dehmolaei, and A.R. Amirani, J. Alloys Compd. 622, 725. (2015).

    Article  Google Scholar 

  10. Z. Du, M.J. Tan, J.F. Guo, G. Bi, and J. Wei, Mater. Sci. Eng. A 667, 125. (2016).

    Article  Google Scholar 

  11. R. Palanivel, I. Dinaharan, R.F. Laubscher, and J.P. Davim, Mater. Des. 106, 195. (2016).

    Article  Google Scholar 

  12. I. Sudhakar, V. Madhu, G.M. Reddy, and K.S. Rao, Def. Technol. 11, 10. (2015).

    Article  Google Scholar 

  13. L.R. Kumar, A. Saravanakumar, V. Bhuvaneswari, G. Gokul, D.D. Kumar, and M.P.J. Karunan, Mater. Today Proc. 45, 9549. (2019).

    Google Scholar 

  14. M. Rouhi, M. Moazami-Goudarzi, and M. Ardestani, Trans. Nonferr. Met. Soc. China 29, 1169. (2019).

    Article  Google Scholar 

  15. Z. Zheng, M.C. Zhao, L. Tan, Y.C. Zhao, B. Xie, D. Yin, K. Yang, and A. Atrens, Surf. Coat. Technol. 386, 125456. (2020).

    Article  Google Scholar 

  16. L. Wang, M. Chen, H. Liu, C. Jiang, V. Ji, and F. Moreira, Surf. Coat. Technol. 331, 196. (2017).

    Article  Google Scholar 

  17. T. Saravanakumar, V. Kavimani, K.S. Prakash, and T. Selvaraju, Prog. Org. Coat. 129, 32. (2019).

    Article  Google Scholar 

  18. P. Maji, S.K. Ghosh, R.K. Nath, and R. Karmakar, J. Braz. Soc. Mech. Sci. Eng. 42, 191. (2020).

    Article  Google Scholar 

  19. R.K. Nath, P. Maji, and J.D. Barma, JOM 73, 1774. (2021).

    Article  Google Scholar 

  20. P. Maji, R. Karmakar, R.K. Nath, R.K. Bhogendro Meitei, and S.K. Ghosh, in Next Gener. Mater. Process. Technol., ed. by S. Bag, C.P. Paul, and M. Baruah (Springer Nature Singapore Pte Ltd., 2021), pp. 147–157.

  21. M. Rahsepar, and H. Jarahimoghadam, Mater. Sci. Eng. A 671, 214. (2016).

    Article  Google Scholar 

  22. S.R. Anvari, F. Karimzadeh, and M.H. Enayati, Wear 304, 144. (2013).

    Article  Google Scholar 

  23. V. Sharma, U. Prakash, and B.V.M. Kumar, Mater. Today Proc. 2, 2666. (2015).

    Article  Google Scholar 

  24. P. Maji, R.K. Nath, P. Paul, R.K.B. Meitei, and S.K. Ghosh, J. Manuf. Process. 69, 1. (2021).

    Article  Google Scholar 

  25. P. Maji, R.K. Nath, R. Karmakar, P. Paul, R.K.B. Meitei, and S.K. Ghosh, CIRP J. Manuf. Sci. Technol. 35, 96. (2021).

    Article  Google Scholar 

  26. H. Baker, and A.S.M. Handbook, Alloy Phase Diagrams, vol 3. (ASM, 1998).

    Google Scholar 

  27. F.J. Baldenebro-López, R. Peréz-Bustamante, I. Estrada-Guel, R. Martínez-Sánchez, A. Duarte-Moller, and C.D. Gómez-Esparza, Adv. Mater. Sci. Eng. 2019, 1. (2019).

    Article  Google Scholar 

  28. J.S.D. Joseph, B. Kumaragurubaran, and S. Sathish, SILICON 12, 1481. (2020).

    Article  Google Scholar 

  29. D.K. Sharma, V. Patel, V. Badheka, K. Mehta, and G. Upadhyay, J. Tribol. 141, 1. (2019).

    Article  Google Scholar 

  30. F.A. Mehraban, F. Karimzadeh, and M.H. Abbasi, JOM 67, 998. (2015).

    Article  Google Scholar 

  31. V. Patel, W. Li, A. Vairis, and V. Badheka, Crit. Rev. Solid State Mater. Sci. 44, 378. (2019).

    Article  Google Scholar 

  32. D.K. Sharma, V. Badheka, V. Patel, and G. Upadhyay, J. Tribol. 143, 050801. (2021).

    Article  Google Scholar 

  33. B.N. Popov, Corros. Eng. 865, 181. (2015).

    Article  Google Scholar 

  34. D. Kesavan, M. Gopiraman, and N. Sulochana, Chem. Sci. Rev. Lett. 1, 1. (2012).

    Google Scholar 

  35. V. Patel, V. Badheka, W. Li, and S. Akkireddy, Arch. Civ. Mech. Eng. 19, 1368. (2019).

    Article  Google Scholar 

  36. A. Orozco-Caballero, M. Álvarez-Leal, D. Verdera, P. Rey, O.A. Ruano, and F. Carreño, Mater. Des. 125, 116. (2017).

    Article  Google Scholar 

  37. V.V. Patel, V. Badheka, and A. Kumar, J. Mater. Process. Technol. 240, 68. (2017).

    Article  Google Scholar 

  38. M. Orłowska, E. Ura-Bińczyk, L. Olejnik, and M. Lewandowska, Corros. Sci. 148, 57. (2019).

    Article  Google Scholar 

  39. A. Devaraju, A. Kumar, and B. Kotiveerachari, Mater. Des. 45, 576. (2013).

    Article  Google Scholar 

  40. M.A. Moghaddas, and S.F. Kashani-Bozorg, Mater. Sci. Eng. A 559, 187. (2013).

    Article  Google Scholar 

  41. L. Long, G. Chen, S. Zhang, T. Liu, and Q. Shi, J. Manuf. Process. 30, 562. (2017).

    Article  Google Scholar 

  42. S. Zhang, Q. Shi, Q. Liu, R. Xie, G. Zhang, and G. Chen, Int. J. Heat Mass Transf. 125, 32. (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Ghosh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, P., Nath, R.K., Karmakar, R. et al. Wear and Corrosion Behavior of Al7075 Matrix Hybrid Composites Produced by Friction Stir Processing: Optimization of Process Parameters. JOM 73, 4397–4409 (2021). https://doi.org/10.1007/s11837-021-04945-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04945-y

Navigation