Skip to main content
Log in

Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials

  • Informatics-Enabled Design of Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have developed a machine learning-based crystal plasticity surrogate model (CP-SM) that can directly learn highly nonlinear material behavior during plastic deformation. CP-SM provides fast inference of spatially resolved three-dimensional (3D) microstructure and micromechanical fields and their evolution during plastic deformation, predicting the 22-dimensional material characteristics including a four-dimensional (4D) quaternion-based representation of crystal orientation, six-dimensional (6D) elastic and plastic strain tensors, and 6D stress at each location in the 3D structure. The predictions from CP-SM are orders of magnitude faster than and show good agreement with the deformation fields predicted by performing direct numerical simulations using spectral solvers. The fidelity of the CP-SM is further tested by assessing how well physics-based constraints are satisfied by the predicted 3D fields. We demonstrate our results on numerical simulations of uniaxially loaded copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.F. Poulsen, Three-dimensional X-ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics (Springer, Berlin, 2004).

    Book  Google Scholar 

  2. R. Pokharel, Materials Discovery and Design (Springer, Cham, 2018).

    Google Scholar 

  3. R. Pokharel, and R.A. Lebensohn, Scr. Mater. 132, 73. (2017).

    Article  Google Scholar 

  4. D. Peirce, R.J. Asaro, and A. Needleman, Acta Metall. 31(12), 1951. (1983).

    Article  Google Scholar 

  5. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand, Philos. Trans. R. Soc. London A 341(1662), 443. (1992).

    Article  Google Scholar 

  6. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, J. Mech. Phys. Solids 40(3), 537. (1992).

    Article  Google Scholar 

  7. P.R. Dawson, Int. J. Solids Struct. 37(1–2), 115. (2000).

    Article  Google Scholar 

  8. D. Raabe, and F. Roters, Int. J. Plast. 20(3), 339. (2004).

    Article  Google Scholar 

  9. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58(4), 1152. (2010).

    Article  Google Scholar 

  10. H. Moulinec, and P. Suquet, CR Acad Sci Paris II 318, 1417. (1994).

    Google Scholar 

  11. R.A. Lebensohn, Acta Mater. 49(14), 2723. (2001).

    Article  Google Scholar 

  12. R.A. Lebensohn, A.K. Kanjarla, and P. Eisenlohr, Int. J. Plast. 32, 59. (2012).

    Article  Google Scholar 

  13. J. Segurado, and R.A. Lebensohn, J. Llorca. Adv. Appl. Mech. 51, 1. (2018).

    Article  Google Scholar 

  14. R.A. Lebensohn, and A.D. Rollett, Comput. Mater. Sci. 173, 109336. (2020).

    Article  Google Scholar 

  15. J. Ghaboussi, Soft Computing in Engineering (CRC Press, Boca Raton, 2018).

    Book  Google Scholar 

  16. M. M. Hasan, A. Senthilnathan, and P. Acar (2021) AIAA Scitech 2021 Forum https://doi.org/10.2514/6.2021-1140

  17. D. Reimann, K. Nidadavolu, N. Vajragupta, T. Glasmachers, P. Junker, and A. Hartmaier, Front. Mater. 6, 181. (2019).

    Article  Google Scholar 

  18. R. Saunders, C. Butler, J. Michopoulos, D. Lagoudas, A. Elwany, and A. Bagchi, npj Comput. Mater. 7(1), 1. (2021).

    Article  Google Scholar 

  19. D.M. de Oca Zapiain, and S.R. Kalidindi, Modell. Simul. Mater. Sci. Eng. 27(7), 074008. (2019).

    Article  Google Scholar 

  20. A. Mangal, and E.A. Holm, Int. J. Plast. 111, 122. (2018).

    Article  Google Scholar 

  21. A. Mangal, and E.A. Holm, Int. J. Plast. 114, 1. (2019).

    Article  Google Scholar 

  22. A. Tran, and T. Wildey, JOM 73(1), 72. (2021).

    Article  Google Scholar 

  23. K. Linka, M. Hillgärtner, K.P. Abdolazizi, R.C. Aydin, M. Itskov, and C.J. Cyron, J. Comput. Phys. 429, 110010. (2021).

    Article  Google Scholar 

  24. A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov. arXiv preprint https://arxiv.org/abs/2002.00021 (2020)

  25. T. Kirchdoerfer, and M. Ortiz, Comput. Methods Appl. Mech. Eng. 304, 81. (2016).

    Article  Google Scholar 

  26. K. Karapiperis, L. Stainier, M. Ortiz, and J.E. Andrade, J. Mech. Phys. Solids 147, 104239. (2021).

    Article  Google Scholar 

  27. M. Mozaffar, A. Paul, R. Al-Bahrani, S. Wolff, A. Choudhary, A. Agrawal, and K. Ehmann, J. Cao. Manuf. Lett. 18, 35. (2018).

    Google Scholar 

  28. G. Capuano, and J.J. Rimoli, Comput. Methods Appl. Mech. Eng. 345, 363. (2019).

    Article  Google Scholar 

  29. A. Frankel, K. Tachida, and R. Jones, Mach. Learn. Sci. Technol. 1(3), 035005. (2020).

    Article  Google Scholar 

  30. M.J. Cherukara, Y.S. Nashed, and R.J. Harder, Sci. Rep. 8(1), 1. (2018).

    Article  Google Scholar 

  31. Y.F. Shen, R. Pokharel, T.J. Nizolek, A. Kumar, and T. Lookman, Acta Mater. 170, 118. (2019).

    Article  Google Scholar 

  32. A. Scheinker, and R. Pokharel, J. Appl. Phys. 128(18), 184901. (2020).

    Article  Google Scholar 

  33. A. Pandey, and R. Pokharel, Scr. Mater. 193, 1. (2021).

    Article  Google Scholar 

  34. M.A. Groeber, and M.A. Jackson, Integ. Mater. Manuf. Innov. 3(1), 56. (2014).

    Article  Google Scholar 

  35. R. Pokharel, J. Lind, S.F. Li, P. Kenesei, R.A. Lebensohn, R.M. Suter, and A.D. Rollett, Int. J. Plast. 67, 217. (2015).

    Article  Google Scholar 

  36. Z. Ding, E. Pascal, and M. De Graef, Acta Mater. 199, 370. (2020).

    Article  Google Scholar 

  37. G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, Nat. Rev. Phys. 3(6), 422. (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy through Los Alamos National Laboratory. Los Alamos National Laboratory (LANL) is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy (Contract No. 89233218CNA000001).

Funding

The work was funded by LANL’s LDRD-ECR Project No. 20190571ECR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeju Pokharel.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokharel, R., Pandey, A. & Scheinker, A. Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials. JOM 73, 3371–3382 (2021). https://doi.org/10.1007/s11837-021-04889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04889-3

Navigation