Skip to main content
Log in

Transesterification of Waste Cooking Oil Using Bone and Eggshell Mixture as a Catalyst

  • 8th European Conference on Renewable Energy Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Reuse of waste such as eggshells and animal bones as a catalyst to convert waste cooking oil into biodiesel fuel was investigated. A mixture of bone and eggshell waste (50:50) was used as a catalyst for biodiesel production from waste cooking oil. Different calcination temperatures have been investigated for the catalyst and the highest production of biodiesel was found at 900°C. The experimental results showed that a methanol/oil ratio of 15:1, a mixture of bone and eggshell catalyst (900°C, 2 h) of 12 wt.%, a reaction temperature of 60°C gave a biodiesel yield of 94% at 4 h. The effects of calcination temperature and catalyst leaching were examined. The catalysts were characterized by x-ray diffraction, N2 adsorption-desorption, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.F. Al-Dawody, A.A. Jazie, and H. Abdulkadhim Abbas, Alexandria Eng. J. 58, 9–17 (2019).

    Article  Google Scholar 

  2. A.A. Jazie, S.A. Abed, M.J. Nuhma, and M.A. Mutar, Eng. Sci. Technol. 4, 642 (2019).

    Google Scholar 

  3. A.A. Jazie, J. Eng. Technol. Sci. 51, 4 (2019).

    Article  Google Scholar 

  4. Z. Wei, C. Xu, and B. Li, Bioresour. Technol. 100, 2883 (2009).

    Article  Google Scholar 

  5. N. Nakatani, H. Takamori, K. Takeda, and H. Sakugawa, Bioresour. Technol. 100, 1510 (2009).

    Article  Google Scholar 

  6. P. Boey, G. Pragas, and S. Abd, Bioresour. Technol. 100, 6362 (2009).

    Article  Google Scholar 

  7. N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop, and K. Faungnawakij, Bioresour. Technol. 101, 3765 (2010).

    Article  Google Scholar 

  8. N. Viriya-empikul, P. Krasae, W. Nualpaeng, B. Yoosuk, and K. Faungnawakij, Fuel 92, 239 (2012).

    Article  Google Scholar 

  9. A.A. Jazie, H. Pramanik, and A.S.K. Sinha, Mater. Renew. Sustain Energy 2, 1 (2013).

    Article  Google Scholar 

  10. K. Chojnacka, J. Hazard. Mater. 121, 167 (2005).

    Article  Google Scholar 

  11. K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, J. Am. Chem. Soc. 124, 11572 (2002).

    Article  Google Scholar 

  12. B. Engin, and M. Eken, Radiat. Phys. Chem. 75, 268 (2006).

    Article  Google Scholar 

  13. W. Rheinheimer, D. Lowing, and J.E. Blendell, Scr. Mater. 178, 236 (2020).

    Article  Google Scholar 

  14. M.A. Sayed Asmaa, A.H. El-Bassuony, and H.K. Abdelsalam, Braz. J. Microbiol. 51, 1475 (2020).

    Article  Google Scholar 

  15. Y. Xu, M. Ou, Y. Liu, J. Xu, X. Sun, C. Fang, Q. Li, J. Han, and Y. Huang, Nano Energy 67, 104250 (2019).

    Article  Google Scholar 

  16. R. Kumar, B.S. Rajeev Kumara, A. Kumarb, and N. Vermab, Phys. Chem. Chem. Phys. 22, 27224 (2020).

    Article  Google Scholar 

  17. C. Luo, C. Yan, W. Li, F. Chun, M. Xie, Z. Zhu, and Y. Gao, Adv. Funct. Mater. 30, 2000026 (2020).

    Article  Google Scholar 

  18. S.K. Abdel-aal, and A.S. Abdel-rahman, J. Nanopart. Res. 22, 267 (2020).

    Article  Google Scholar 

  19. B.S.M. Jadhavar, V.V. Mote, and B.S. Munde, J. Mater. Sci. Mater. Electron. 31, 17297 (2020).

    Article  Google Scholar 

  20. K.H. Omran, M.S. Abd El-sadek, M. Mostafa, and O.M. Hemeda, JOM 73, 630 (2021).

    Article  Google Scholar 

  21. A.A. Jazie, H. Pramanik, and A.S.K. Sinha, J. Sustain. Dev. Green Econ. Spec. Issue Int. 2, 27 (2013).

    Google Scholar 

  22. R.H. Borgwardt, AIchE 31, 103 (1985).

    Article  Google Scholar 

  23. M. Kouzu, T. Kasuno, M. Tajika, and Y. Sugimoto, Fuel 87, 2798 (2008).

    Article  Google Scholar 

  24. J.C. Maya, F. Chejne, C.A. Gómez, and S.K. Bhatia, AIChE J. 64(10), 3638 (2018).

    Article  Google Scholar 

  25. K.O.Y. Kameshima, S. Kuramochi, and A. Yasumori, J. Ceram. Soc. Japan 106, 749 (1998).

    Article  Google Scholar 

  26. N.V. Morox, A.V.D.N.A. Palchik, and T.N. Moroz, Russ. J. Inorg. Chem. 51, 1098 (2006).

    Article  Google Scholar 

  27. R.Z. Legeros, Sect. I Symp. Bioact. Mater. Orthop. Surg. 395, 81 (2002).

    Google Scholar 

  28. A.A. Jazie, E. Jadeen Alshebaney, and S.A. Abed, in 5th International Conference on Power General System Renewable Energy Technology. PGSRET 2019 (2019), pp. 1–6.

  29. A.A. Jazie, S.A. Abed, and H. Pramanik, in 5th International Conference on Power General System Renewable Energy Technology. PGSRET 2019 (2019).

Download references

Acknowledgement

The authors would like to thank the Faculty of the Engineering/ University of Al Qadisiyah for providing the laboratory requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Jazie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazie, A.A., Albaaji, A.J. Transesterification of Waste Cooking Oil Using Bone and Eggshell Mixture as a Catalyst. JOM 73, 1242–1250 (2021). https://doi.org/10.1007/s11837-021-04622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04622-0

Navigation