Skip to main content
Log in

Strain-Rate Sensitivities of Different Deformation Mechanisms in AZ31B Magnesium Alloy Sheet at Various Temperatures

  • Developments in the Production of Magnesium Alloy Flat Products
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The evolutions of strain-rate sensitivity (SRS) in two slip modes, basal <a> and prismatic <a> in AZ31B alloy sheet, were studied at different temperatures with both experiments and simulations. With increasing deformation temperature, the AZ31B alloy sheet becomes more sensitive to strain rate under rolling direction tension. Meanwhile, the anisotropy (r-value) also presents a clearly increasing trend with loading rate at temperatures above 150 °C. Numerical simulation results based on crystal plasticity suggest that the difference in SRSs is responsible for the strain-rate dependence of the r-value at high temperatures, which may present different evolution trends with temperature. The effects of strain rate on slip-mode activities and texture evolution are also further analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.R. Agnew, and Ö. Duygulu, Int. J. Plast. 21(6), 1161. (2005).

    Article  Google Scholar 

  2. G. Zhou, M.K. Jain, P. Wu, Y. Shao, D. Li, and Y. Peng, Int. J. Plast. 79, 19. (2016).

    Article  Google Scholar 

  3. Z. Li, G. Zhou, D. Li, M.K. Jain, P. Wu, and Y. Peng, Int. J. Plast. 79, 19. (2020).

    Google Scholar 

  4. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Int. J. Plast. 27(5), 688. (2011).

    Article  Google Scholar 

  5. S. Kurukuri, M.J. Worswick, D. Ghaffari Tari, R.K. Mishra, and J.T. Carter, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372(2015), 20130216. (2014).

    Article  Google Scholar 

  6. H. Watanabe, and K. Ishikawa, Mater. Sci. Eng. A 523(1–2), 304. (2009).

    Article  Google Scholar 

  7. Z. Zhang, T. Jun, T.B. Britton, and F. Dune, Acta Mater. 118, 317. (2016).

    Article  Google Scholar 

  8. W.A. Spitzig, and A.S. Keh, Acta Metall. 18, 1021. (1970).

    Article  Google Scholar 

  9. J.A. Del Valle, and O.A. Ruano, Scr. Mater. 55(9), 775. (2006).

    Article  Google Scholar 

  10. E. Karimi, A. Zarei-Hanzaki, M.H. Pishbin, H.R. Abedi, and P. Changizian, Mater. Des. 49, 173. (2013).

    Article  Google Scholar 

  11. A.R. Antoniswamy, E.M. Taleff, L.G. Hector, and J.T. Carter, Mater. Sci. Eng. A 631, 1. (2015).

    Article  Google Scholar 

  12. S.A. Habib, A.S. Khan, T. Gnäupel-Herold, J.T. Lloyd, and S.E. Schoenfeld, Int. J. Plast. 95, 163. (2017).

    Article  Google Scholar 

  13. A.G. Beer, and M.R. Barnett, Mater. Sci. Eng. A 423(1–2), 292. (2006).

    Article  Google Scholar 

  14. R.A. Lebensohn, and C.N. Tomé, Acta Metal. Mater. 41(9), 2611. (1993).

    Article  Google Scholar 

  15. I.J. Beyerlein, and C.N. Tomé, Int. J. Plast. 24(5), 867. (2008).

    Article  Google Scholar 

  16. A. Chapuis, and Q. Liu, Int. J. Solid. Struct. 152, 217. (2018).

    Article  Google Scholar 

  17. H. Wang, P. Wu, S. Kurukuri, M.J. Worswick, Y. Peng, D. Tang, and D. Li, Int. J. Plast. 107, 207. (2018).

    Article  Google Scholar 

  18. A. Chapuis, and Q. Liu, J. Magn. Alloys 7, 433. (2019).

    Article  Google Scholar 

  19. G. Zhou, Z. Li, D. Li, Y. Peng, H. Wang, and P. Wu, Mater. Sci. Eng. A 730, 438. (2018).

    Article  Google Scholar 

  20. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé, Int. J. Solid. Struct. 47(21), 2905. (2010).

    Article  Google Scholar 

  21. D. Pellegrini, A. Ghiotti, and S. Bruschi, Int. J. Mater. Form. 2(1), 275. (2009).

    Article  Google Scholar 

  22. B. Hutchinson, M.R. Barnett, A.G. Haderi, P. Cizek, and I. Sabirov, Int. J. Mater. Res. 100(4), 556. (2009).

    Article  Google Scholar 

  23. A.J. Carpenter, A.R. Antoniswamy, J.T. Carter, L.G. Hector Jr., and E.M. Taleff, Acta Mater. 68, 254. (2014).

    Article  Google Scholar 

  24. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama, Mater. Trans. 44(4), 445. (2003).

    Article  Google Scholar 

  25. N. Stanford, K. Sotoudeh, and P.S. Bate, Acta Mater. 59(12), 4866. (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors from SJTU would like to acknowledge the support of the National Natural Science Foundation of China (No. 51775337, 51675331). P.D. Wu was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC, project No: RGPIN-2016-06464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Liu, R., Tang, W. et al. Strain-Rate Sensitivities of Different Deformation Mechanisms in AZ31B Magnesium Alloy Sheet at Various Temperatures. JOM 73, 1419–1427 (2021). https://doi.org/10.1007/s11837-021-04609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04609-x

Navigation