Skip to main content
Log in

Microwave-Assisted Carbothermic Reduction of Discarded Rare Earth Magnets for Recovery of Neodymium and Iron Values

  • Advances in the Circular Economy of Lanthanides
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Neodymium-iron-boron (NdFeB) waste magnets consist of approximately 28% rare earth values in the form of the Nd2Fe14B phase. According to the results, carbothermic reduction through microwave irradiation of crushed magnets was observed to be promising for the separation of metallic iron and rare earth values. The effect of microwave exposure time and charcoal addition on the formation of different phases was evaluated. Carbothermic reduction (10% C) for 1.2 min raised the temperature of the sample to 990°C and resulted in the formation of iron balls with more than 85% purity. Higher exposure time favors the formation of the NdFeO3 phase, thereby encapsulating the rare earths, resulting in limited dissociation. Rare earth oxides with purity of more than 98% were recovered via a leaching and precipitation route. The microwave route was found to be superior to the conventional muffle furnace heating route with low energy consumption and metallic iron formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Darcy, H.M.D. Bandara, B. Mishra, B. Blanplain, D. Apelian, and J.H. Emmert, JOM 65, 1381 (2013).

    Article  Google Scholar 

  2. I.C. Nlebedim and A.H. King, JOM 70, 115 (2018).

    Article  Google Scholar 

  3. M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, IEEE Trans. Magn. 20, 1584 (1984).

    Article  Google Scholar 

  4. A. Kumari, M.K. Sinha, S. Pramanik, and S.K. Sahu, Waste Manag 75, 486 (2018).

    Article  Google Scholar 

  5. I.B. Fernandes, A.A. Llamas, and M.A. Reuter, JOM 72, 2754 (2020).

    Article  Google Scholar 

  6. C.K. Gupta and N. Krishnamurthy, Extractive Metallurgy of Rare Earths (Boca Raton: CRC Press, 2005).

    Google Scholar 

  7. F. Habashi, Can. Metall. Q. 52, 224 (2013).

    Article  Google Scholar 

  8. M. Firdaus, M.A. Rhamdhani, Y. Durandet, W.J. Rankin, and K.J. McGregor, Sustain. Metall. 2, 276 (2016).

    Article  Google Scholar 

  9. Y. Yang, A. Walton, R. Sheridan, K. Guth, R. Gau, O. Gutfleisch, and K. Binnemans, Sustain. Metall. 3, 122 (2017).

    Article  Google Scholar 

  10. Y. Bian, S. Guo, L. Jiang, J. Liu, K. Tang, and W. Ding, ACS Sustain. Chem. Eng. 4, 810 (2016).

    Article  Google Scholar 

  11. M. Nakamoto, K. Kubo, Y. Katayama, T. Tanaka, and T. Yamamoto, Metall. Mater. Trans. B 43, 468 (2012).

    Article  Google Scholar 

  12. M.A.R. Onal, C.R. Borra, M. Guo, B. Blanpain, and T.V. Gerven, J. Sustain. Met. 1, 199 (2015).

    Article  Google Scholar 

  13. C.H. Lee, Y.J. Chen, C.H. Liao, S.R. Popuri, S.L. Tsai, and C.E. Hung, Metall. Mater. Trans. A 44, 5825 (2013).

    Article  Google Scholar 

  14. M.A.R. Onal, C.R. Borra, M. Guo, B. Blanpain, and T.V. Gerven, J. Rare Earths 35, 574 (2017).

    Article  Google Scholar 

  15. M. Firduas, M.A. Rhamdhani, Y. Durandet, W.J. Rankin, and K. McGregor, Corros. Sci. 133, 318 (2018).

    Article  Google Scholar 

  16. M. Firduas, M.A. Rhamdhani, W.J. Rankin, M. Pownceby, N.A.S. Webster, A.M. D’Angelo, and K. McGregor, Corros. Sci. 133, 374 (2018).

    Article  Google Scholar 

  17. F. Liu, A. Porvali, P. Halli, B.P. Wilson, and M. Lundström, JOM 72, 806 (2020).

    Article  Google Scholar 

  18. H. Tanvar, S.S. Kumar, and N. Dhawan, JOM 71, 2345 (2019).

    Article  Google Scholar 

  19. T. Horikawa, K. Miura, M. Itoh, and K.I. Machida, J. Alloys Compd. 408, 1386 (2006).

    Article  Google Scholar 

  20. X. Jilei, P. Shunkang, C. Lichun, L. Xing, L. Peihao, and Y. Qingrong, J. Rare Earths 33, 514 (2015).

    Article  Google Scholar 

  21. M. Tanaka, T. Oki, K. Koyama, H. Narita, and T. Oishi, Handb. Phys. Chem. Rare Earths 43, 159 (2013).

    Article  Google Scholar 

  22. C.A. Pickles, Miner. Eng. 22, 1102 (2009).

    Article  Google Scholar 

  23. E.R. Bobicki, Q. Liu, and Z. Xu, Miner. Eng. 70, 43 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding provided by the Indian Institute of Technology, IIT Roorkee, through a Faculty Initiation Grant. Thanks are also due to Sonu Kumar for his help in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanvar, H., Dhawan, N. Microwave-Assisted Carbothermic Reduction of Discarded Rare Earth Magnets for Recovery of Neodymium and Iron Values. JOM 73, 54–62 (2021). https://doi.org/10.1007/s11837-020-04409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04409-9

Navigation