Skip to main content
Log in

The Interfacial Behavior Between Coke and Liquid Iron: A Comparative Study on the Influence of Coke Pore, Carbon Structure and Ash

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Identifying key factors governing the dissolution rate of metallurgical coke into liquid iron is important for sustainable developments of blast furnace iron-making. This study investigated the metallurgical coke dissolution into liquid iron by comparing the interfacial behavior between four carbonaceous materials and iron to clarify the influence of coke pore, carbon structure and ash. The wettability between coke and molten iron is reduced by the disorder of the carbon structure, and the presence of minerals can significantly reduce the rate of carburization with the dissolution breadth and depth of coke powder tablets reaching minimum values, 11 mm and 0.33 mm, respectively. The presence of pores significantly improves the dissolution rate, and the dissolution breadth and depth of coke slices increased to 16.5 mm and 0.97 mm, respectively. The main mechanism by which the pores accelerate the rate of metallurgical coke into the molten iron is to improve the contact area between the iron and the coke slices at high temperatures. The effect of the carbon structure and ash on the dissolution rate becomes weaker when there are pores in the coke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.W. Gudenau, J.P. Mulanza, and D.G.R. Sharma, Steel Res. 61, 97 (1990).

    Article  Google Scholar 

  2. B. Cusack, G. Hardie, and P. Burke, European Ironmaking Cong. Glasgow, 1991.

  3. J. Keogh, G. Hardie, D. Philip, and P. Burke, AIME 50th Ironmaking Conference Proceedings, Washington, 1991.

  4. M. Hallin, Ishii Symposium on Sustainable Ironmaking, CCSD, Sydney, Australia. 2006.

  5. Y. Omori, Blast furnace phenomena and modelling. (Committee on reaction within blast furnace, 1987), pp. 98-124.

  6. X. Wang, Metallurgy of Iron and Steel, Part I: Ironmaking, 2nd ed. (Beijing: Metallurgical Industry Press, 2013), pp. 36–42.

    Google Scholar 

  7. T. Murakami, M. Ohno, K. Suzuki, K. Owaki, and E. Kasai, ISIJ Int. 57, 1928 (2017).

    Article  Google Scholar 

  8. C.S. Nguyen, K. Ohno, T. Maeda, and K. Kunitomo, ISIJ Int. 57, 1491 (2017).

    Article  Google Scholar 

  9. K. Ohno, A. Babich, J. Mitsue, T. Maeda, D. Senk, and H.W. Gudenau, ISIJ Int. 52, 1482 (2012).

    Article  Google Scholar 

  10. C. Wu, R. Wiblen, and V. Sahajwalla, Metall. Mater. Trans. B 31, 1099 (2000).

    Article  Google Scholar 

  11. M. Chapman, Insoluble oxide product formation and its effect on coke dissolution in liquid iron, University of Wollongong, Doctoral Dissertation, 64 (2009).

  12. S.T. Cham, R. Khanna, V. Sahajwalla, R. Sakurovs, and D. French, ISIJ Int. 49, 1860 (2009).

    Article  Google Scholar 

  13. B.J. Monaghan, M.W. Chapman, and S.A. Nightingale, Steel Res. Int. 81, 829 (2010).

    Article  Google Scholar 

  14. R. Khanna, V. Sahajwalla, B. Rodgers, and F. McCarthy, Metall. Mater. Trans. B 37, 623 (2006).

    Article  Google Scholar 

  15. M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, and R.J. Nightingale, Metall. Mater. Trans. B 39, 418 (2008).

    Article  Google Scholar 

  16. V. Sahajwalla and R. Khanna, Metall. Mater. Trans. B 31, 1517 (2000).

    Article  Google Scholar 

  17. V. Sahajwalla and R. Khanna, Acta Mater. 50, 663 (2002).

    Article  Google Scholar 

  18. F. McCARTHY, R. Khanna, V. Sahajwalla, and N. Simento, ISIJ Int. 45, 1261 (2005).

    Article  Google Scholar 

  19. F. McCarthy, V. Sahajwalla, J. Hart, and N. Saha-Chaudhury, Metall. Mater. Trans. B 34, 573 (2003).

    Article  Google Scholar 

  20. Y. Deng, J. Zhang, and K. Jiao, ISIJ Int. 24, 659 (2018).

    Google Scholar 

  21. K. Ohno, S. Miura, T. Maeda, and K. Kunitomo, ISIJ Int. 59, 655 (2019).

    Article  Google Scholar 

  22. K. Li, R. Khanna, J. Zhang, Z. Liu, V. Sahajwalla, and T. Yang, Fuel 133, 194 (2014).

    Article  Google Scholar 

  23. S. Gupta, D. French, R. Sakurovs, M. Grigore, H. Sun, and T. Cham, Prog. Energy Combust. Sci. 34, 155 (2008).

    Article  Google Scholar 

  24. K. Li, J. Zhang, Z. Liu, M. Barati, J. Zhong, and M. Wei, Metall. Mater. Trans. B 46, 1104 (2015).

    Article  Google Scholar 

  25. K. Li, J. Zhang, M. Sun, C. Jiang, Z. Wang, and J. Zhong, Fuel 225, 299 (2018).

    Article  Google Scholar 

  26. M. Sun, J. Zhang, K. Li, K. Guo, H. Wang, and Z. Wang, Metall. Mater. Trans. B 49, 2611 (2018).

    Article  Google Scholar 

  27. M. Sun, J. Zhang, K. Li, S. Ren, Z. Wang, and C. Jiang, JOM 71, 4305 (2019).

    Article  Google Scholar 

  28. C.S. Nguyen, K. Ohno, T. Maeda, and K. Kunitomo, ISIJ Int. 56, 1325 (2016).

    Article  Google Scholar 

  29. S.S. Gornostayev, T.M. Fabritius, O. Kerkkonen, and J.J. Härkki, Int. J. Miner. Metall. Mater. 19, 478 (2012).

    Article  Google Scholar 

  30. K. Ohno, T. Maeda, K. Nishioka, and M. Shimizu, ISIJ Int. 50, 53 (2010).

    Article  Google Scholar 

  31. Y. Sasaki, Y. Kashiwaya, and K. Tokuchi, Metall. Mater. Trans. B 31, 216 (2000).

    Article  Google Scholar 

  32. M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, and R.J. Nightingale, Metall. Mater. Trans. B 42, 642 (2011).

    Article  Google Scholar 

  33. R. Xu, J. Zhang, W. Wang, H. Zuo, Z. Xue, and M. Song, J. Iron. Steel Res. Int. 25, 298 (2018).

    Article  Google Scholar 

  34. S.T. Cham, V. Sahajwalla, R. Sakurovs, H. Sun, and M. Dubikova, ISIJ Int. 44, 1835 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was part of a research project named “The dissolution behavior and carburizing ability of coke dissolution in hot metal” supported by the National Science Foundation of China [51774032], the National Key Research and Development Program of China [2017YFB0304300 & 2017YFB0304303], the National Science Foundation for Young Scientists of China (51804025), the Chinese Fundamental Research Funds for the Central Universities [FRF-TP-17-086A1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Jiang Li or Shan Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, MM., Zhang, JL., Li, KJ. et al. The Interfacial Behavior Between Coke and Liquid Iron: A Comparative Study on the Influence of Coke Pore, Carbon Structure and Ash. JOM 72, 2174–2183 (2020). https://doi.org/10.1007/s11837-020-04048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04048-0

Navigation