Skip to main content
Log in

Probing Ultrafast Dynamics in Laser Powder Bed Fusion Using High-Speed X-Ray Imaging: A Review of Research at the Advanced Photon Source

  • The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is a transformative technology that opens up many exciting opportunities. In metal AM processes, high-power heat sources are often used to locally fuse the metal feedstock to the previous layer. Extreme thermal conditions are involved and unique microstructures are developed in AM-processed materials. At the Advanced Photon Source, we applied high-speed x-ray imaging to probe the ultrafast dynamics of the vapor depression, melt flow and particle spattering, among other transient phenomena. Demonstrated by the scientific cases reviewed and cited here, high-speed x-ray imaging is a unique tool for metal AM research. It provides invaluable information that can help address the critical issues in AM associated with structural defects, high-fidelity models, build reliability and repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Ref. [8] (Color figure online)

Fig. 4

Reprinted with permission from Ref. [10]

Fig. 5

Adapted from Ref. [12]

Fig. 6

The simulation is reprinted with permission from Ref. [13]

Similar content being viewed by others

References

  1. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  2. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 92, 112 (2018).

    Article  Google Scholar 

  3. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).

    Article  Google Scholar 

  4. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, and T. Sun, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  5. N.D. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, W. Everhart, A.D. Rollett, L. Chen, and T. Sun, J. Synchrotron Radiat. 25, 1467 (2018).

    Article  Google Scholar 

  6. N.D. Parab, J.E. Barnes, C. Zhao, R.W. Cunningham, K. Fezzaa, A.D. Rollett, and T. Sun, Sci. Rep. 9, 1 (2019).

    Article  Google Scholar 

  7. S.J. Wolff, H. Wu, N. Parab, C. Zhao, K.F. Ehmann, T. Sun, and J. Cao, Sci. Rep. 9, 1 (2019).

    Article  Google Scholar 

  8. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Science (80-) 363, 849 (2019).

    Article  Google Scholar 

  9. R. Fabbro and K. Chouf, J. Appl. Phys. 87, 4075 (2000).

    Article  Google Scholar 

  10. Q. Guo, C. Zhao, L.I. Escano, Z. Young, L. Xiong, K. Fezzaa, W. Everhart, B. Brown, T. Sun, and L. Chen, Acta Mater. 151, 169 (2018).

    Article  Google Scholar 

  11. S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  12. C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun, Phys. Rev. X 9, 21052 (2019).

    Google Scholar 

  13. N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, and W. Tan, Phys. Rev. Appl. 11, 1 (2019).

    Article  Google Scholar 

  14. S.M.H. Hojjatzadeh, N.D. Parab, W. Yan, Q. Guo, L. Xiong, C. Zhao, M. Qu, L.I. Escano, X. Xiao, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  15. A. Bobel, L.G. Hector, I. Chelladurai, A.K. Sachdev, T. Brown, W.A. Poling, R. Kubic, B. Gould, C. Zhao, N. Parab, A. Greco, and T. Sun, Materialia 6, 100306 (2019).

    Article  Google Scholar 

  16. Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Addit. Manuf. 28, 600 (2019).

    Article  Google Scholar 

  17. B. Richter, N. Blanke, C. Werner, N.D. Parab, T. Sun, F. Vollertsen, and F.E. Pfefferkorn, CIRP Ann. 68, 229 (2019).

    Article  Google Scholar 

  18. L.I. Escano, N.D. Parab, L. Xiong, Q. Guo, C. Zhao, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  19. N.D. Parab, L. Xiong, Q. Guo, Z. Guo, C. Kirk, Y. Nie, X. Xiao, K. Fezzaa, W. Everheart, W.W. Chen, L. Chen, and T. Sun, Addit. Manuf. 30, 100878 (2019).

    Article  Google Scholar 

  20. Q. Guo, C. Zhao, M. Qu, L. Xiong, S.M.H. Hojjatzadeh, L.I. Escano, N.D. Parab, K. Fezzaa, T. Sun, and L. Chen, Addit. Manuf. 31, 100939 (2019).

    Google Scholar 

  21. Y. Kawahito and H. Wang, Scr. Mater. 154, 73 (2018).

    Article  Google Scholar 

  22. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, Nat. Commun. 9, 1 (2018).

    Article  Google Scholar 

  23. N.P. Calta, J. Wang, A.M. Kiss, A.A. Martin, P.J. Depond, G.M. Guss, V. Thampy, A.Y. Fong, J.N. Weker, K.H. Stone, C.J. Tassone, M.J. Kramer, M.F. Toney, A. Van Buuren, and M.J. Matthews, Rev. Sci. Instrum. 89, 055101 (2018).

    Article  Google Scholar 

  24. C.L.A. Leung, S. Marussi, M. Towrie, J. del Val Garcia, R.C. Atwood, A.J. Bodey, J.R. Jones, P.J. Withers, and P.D. Lee, Addit. Manuf. 24, 647 (2018).

    Article  Google Scholar 

  25. C.L.A. Leung, S. Marussi, M. Towrie, R.C. Atwood, P.J. Withers, and P.D. Lee, Acta Mater. 166, 294 (2019).

    Article  Google Scholar 

  26. A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J. Nelson Weker, M.F. Toney, T. van Buuren, and M.J. Matthews, Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  27. A.A. Martin, N.P. Calta, J.A. Hammons, S.A. Khairallah, M.H. Nielsen, R.M. Shuttlesworth, N. Sinclair, M.J. Matthews, J.R. Jeffries, T.M. Willey, and J.R.I. Lee, Mater. Today Adv. 1, 100002 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This contribution summarizes the content I presented at the 2019 Asia–Pacific International Conference on Additive Manufacturing. The research described here was all performed and published at the time I worked at the Advanced Photon Source. I would like to thank all our team members and collaborators for their great efforts, particularly Prof. Anthony Rollett at Carnegie Mellon University, Prof. Lianyi Chen at University of Wisconsin-Madison, and Prof. Wenda Tan at University of Utah, who led some of the projects I introduced in this contribution. All research described here used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T. Probing Ultrafast Dynamics in Laser Powder Bed Fusion Using High-Speed X-Ray Imaging: A Review of Research at the Advanced Photon Source. JOM 72, 999–1008 (2020). https://doi.org/10.1007/s11837-020-04015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04015-9

Navigation