Skip to main content
Log in

Allowable Ranges of Conventional Forging Parameters Determination for TA15 Ti-Alloy to Obtain Tri-modal Microstructure Under Given Subsequent Heat Treatment

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Conventional forging combined with subsequent heat treatments is a promising method for TA15 Ti-alloy to obtain a tri-modal microstructure with excellent mechanical properties. In this paper, a prediction model based on an improved back-propagation neural network was adopted to investigate the combinations of deformation temperature and degree at different strain rates and post-forging cooling modes. There exist reasonable combinations under a strain rate of 0.01 s−1 and air cooling or a strain rate of 0.1 s−1 and water quenching. The dependence of final microstructural feature parameters on forging parameters was obtained for the two cases. Targeting ideal tri-modal microstructure feature parameters, the allowable ranges of the forging parameters were obtained in reverse. The results show that the allowable ranges under a strain rate of 0.01 s−1 and air cooling are wider. This provides a guide to obtain a tri-modal microstructure by conventional forging combined with subsequent heat treatment during actual production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Wu, H. Yang, and H.W. Li, Trans. Nonferrous Met. Soc. China 24, 1819 (2014).

    Article  Google Scholar 

  2. X.G. Fan, H. Yang, and P.F. Gao, Mater. Des. 51, 34 (2013).

    Article  Google Scholar 

  3. P.F. Gao, G. Qin, X.X. Wang, Y.X. Li, M. Zhan, G.J. Li, and J.S. Li, Mater. Sci. Eng. A 739, 203 (2019).

    Article  Google Scholar 

  4. Y.G. Zhou, W.D. Zeng, and H.Q. Yu, Mater. Sci. Eng. A 393, 204 (2005).

    Article  Google Scholar 

  5. Z.C. Sun, F.X. Han, H.L. Wu, and H. Yang, J. Mater. Process. Technol. 229, 72 (2016).

    Article  Google Scholar 

  6. J.C. Zhu, Y. Wang, Z.H. Lai, L. Han, and Y. Liu, China 200910073419.9 (2010)

  7. P.F. Gao, H. Yang, X.G. Fan, and S.L. Yan, J. Mater. Process. Technol. 212, 2520 (2012).

    Article  Google Scholar 

  8. Z. Sun, S. Guo, and H. Yang, Acta Mater. 61, 2057 (2013).

    Article  Google Scholar 

  9. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker, Metall. Mater. Trans. A 34, 2377 (2003).

    Article  Google Scholar 

  10. S.I. Oh, S.L. Semiatin, and J.J. Jonas, Metall. Trans. A 23, 963 (1992).

    Article  Google Scholar 

  11. X.G. Fan, Ph.D. thesis, Northwestern Polytechnical University (2012).

  12. M. Jackson, R. Dashwood, L. Christodoulou, and H. Flower, Metall. Mater. Trans. A 36, 1317 (2005).

    Article  Google Scholar 

  13. Z. Sun, H. Yang, and N. Sun, J. Mater. Eng. Perform. 21, 313 (2011).

    Article  Google Scholar 

  14. P.F. Gao, X.G. Fan, and H. Yang, J. Mater. Process. Technol. 239, 160 (2017).

    Article  Google Scholar 

  15. F. Warchomicka, M. Stockinger, and H.P. Degischer, J. Mater. Process. Technol. 177, 473 (2006).

    Article  Google Scholar 

  16. J. Luo, S.F. Liu, and M.Q. Li, Mater. Charact. 108, 115 (2015).

    Article  Google Scholar 

  17. X.G. Fan, H. Yang, P.F. Gao, and S.L. Yan, Mater. Sci. Eng. A 546, 46 (2012).

  18. L. Shikai, X. Baiqing, and H. Songxiao, Rare Met. 26, 33 (2007).

    Article  Google Scholar 

  19. C. Dong, Matlab Neural Network and Application (Beijing: Beijing National Defence Industry Press, 2005), p. 64.

    Google Scholar 

  20. Z. Sun, H. Wu, M. Wang, and J. Cao, Adv. Eng. Mater. 19, 1 (2017).

    Google Scholar 

  21. Z. Sun, X. Mao, H. Wu, H. Yang, and J. Li, Mater. Sci. Eng. A 654, 113 (2016).

    Article  Google Scholar 

  22. X.Q. Wang, M.Sc. thesis, Northwestern Polytechnical University (2014).

  23. Y.Y. Zong, D.B. Shan, and Y. Lu, J. Mater. Sci. 41, 3753 (2006).

    Article  Google Scholar 

  24. P.F. Gao, H. Yang, and X.G. Fan, Mater. Des. 32, 2012 (2011).

    Article  Google Scholar 

  25. J. Lin and T.A. Dean, J. Mater. Process. Technol. 167, 354 (2005).

    Article  Google Scholar 

  26. M. Meng, X.G. Fan, H. Yang, L.G. Guo, M. Zhan, and P.F. Gao, J. Alloys Compd. 714, 294 (2017).

    Article  Google Scholar 

  27. W. Yu, M. Li, and J. Luo, Rare Metal. Mater. Eng. 38, 19 (2009).

    Article  Google Scholar 

  28. D. Hull and D.J. Bacon, Introduction to Dislocations, 5th ed. (Oxford: Elsevier, 2011).

    Google Scholar 

  29. T. Sheppard and J. Norley, Mater. Sci. Technol. 4, 903 (1988).

    Article  Google Scholar 

  30. Y. Zhou, W. Zeng, and H. Yu, Eng. Sci. 3, 61 (2001).

    Google Scholar 

  31. X. Chen, Q. Fan, and X. Yang, Rare Metal. Mater. Eng. 41, 2123 (2012).

    Google Scholar 

  32. X. Ma, W. Zeng, F. Tian, and Y. Zhou, Mater. Sci. Eng. A 548, 6 (2012).

    Article  Google Scholar 

  33. J. Xu, W. Zeng, Z. Jia, X. Sun, and J. Zhou, J. Alloys Compd. 618, 343 (2015).

    Article  Google Scholar 

  34. S.L. Semiatin and T.R. Bieler, Acta Mater. 49, 3565 (2001).

    Article  Google Scholar 

  35. B. Appolaire, L. Héricher, and E. Aeby-Gautier, Acta Mater. 53, 3001 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 51675432]; and Project of Science, Technology and Innovation Commission of Shenzhen Municipality [Grant No. JCYJ20170815163436211].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Yin, Z., Cao, J. et al. Allowable Ranges of Conventional Forging Parameters Determination for TA15 Ti-Alloy to Obtain Tri-modal Microstructure Under Given Subsequent Heat Treatment. JOM 71, 4746–4757 (2019). https://doi.org/10.1007/s11837-019-03837-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03837-6

Navigation