Skip to main content
Log in

Influence of the Tungsten Content on the Elastic Modulus of New Ti-15Mo-W Alloys Intended for Medical Applications

  • Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A study has been carried out on the elastic modulus of cast ternary Ti-15Mo-W alloys (containing 4 up to 11 wt.% W). Tungsten was added to the Ti-15Mo alloy to improve the mechanical properties. The influence of tungsten content on the elastic modulus is discussed more thoroughly, along with other mechanical properties. Samples were obtained by successive melting using pure metals in vacuum arc re-melting equipment. The alloy microstructure proved to be homogeneous showing the β-phase predominance. The modulus of elasticity was determined by mechanical compression tests. The samples showed no cracks, having super-plasticity characteristics similar to other titanium alloys. According to the tests, the samples showed good mechanical properties. The values obtained ranged from 248–327 HV for microhardness, 782–921 MPa for compressive strength and 17.86–45.35 GPa for the elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li, Regen. Biomater. 173 (2016).

  2. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, Materials 7, 1709 (2014).

    Article  Google Scholar 

  3. P.M. Hashemi, E. Borhani, and M.S. Nourbakhsh, Nanomed. J. 3, 202 (2016).

    Google Scholar 

  4. R.M. Pilliar, Metallic Biomaterials. Biomedical Materials, ed. R. Narayan (New York, NY: Springer, 2009), p. 54.

    Google Scholar 

  5. M.C. Conti, A. Karl, P.S. Wismayer, and J. Buhagiar, Biomatter 4, e27713 (2014).

    Article  Google Scholar 

  6. M.G. Minciuna, P. Vizureanu, D.C. Achitei, N. Ghiban, A.V. Sandu, and N.C. Forna, Rev. Chim. 65, 335 (2014).

    Google Scholar 

  7. A. Ghiban, M. Buzatu, B. Ghiban, and S. Ciucă, U.P.B. Sci. Bull. Ser. B 77, 299 (2015).

    Google Scholar 

  8. M. Dinu, M. Târcolea, M. Cojocaru, A.I. Gherghilescu, and C.M. Cotruţ, U.P.B. Sci. Bull. Ser. B 77, 149 (2015).

    Google Scholar 

  9. R.M. Angelescu, D. Răducanu, V.D. Cojocaru, M.L. Angelescu, M. Buţu, I. Cincă, and I. Dan, U.P.B. Sci. Bull. Ser. B 77, 221 (2015).

    Google Scholar 

  10. I.V. Okulov, M. Bönisch, A.V. Okulov, A.S. Volegov, H. Attar, S. Ehtemam-Haghighi, M. Calin, Z. Wang, A. Hohenwarter, I. Kaban, K.G. Prashanth, and J. Eckert, Mater. Sci. Eng. A 733, 80 (2018).

    Article  Google Scholar 

  11. H. Attar, S. Ehtemam-Haghighi, D. Kent, and M.S. Dargusch, Int. J. Mach. Tool. Manufact. 133, 85 (2018).

    Article  Google Scholar 

  12. R.M. Angelescu, C. Cotruţ, A. Nocivin, V.D. Cojocaru, D. Răducanu, M.L. Angelescu, and I. Cincă, U.P.B. Sci. Bull. Ser. B 77, 237 (2015).

    Google Scholar 

  13. X. Liu, S. Chen, J.K.H. Tsoi, and J.P. Matinlinna, Regen. Biomater. 4, 315 (2017).

    Article  Google Scholar 

  14. D. Kapoor, Johnson Matthey Technol. Rev. 61, 66 (2017).

    Article  Google Scholar 

  15. J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, and K. Yang, J. Mech. Behav. Biomed. Mater. 87, 68 (2018).

    Article  Google Scholar 

  16. R. Radha and D. Sreekanth, J. Magn. Alloys 5, 286 (2017).

    Article  Google Scholar 

  17. C. Mas-Moruno, B. Garrido, D. Rodriguez, E. Ruperez, and F.J. Gil, J. Mater. Sci. Mater. Med. 26, 109 (2015).

    Article  Google Scholar 

  18. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, and M.H.I. Ibrahim, J. Alloys Compd. 701, 698 (2017).

    Article  Google Scholar 

  19. R.B. Osman and M.V. Swain, Materials 8, 932 (2015).

    Article  Google Scholar 

  20. A.H.G. Mohamed, I. Mervat, and K. Sengo, Adv. Mat. Res. 1024, 308 (2014).

    Google Scholar 

  21. M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Int. J. Chem. Nuclear Metall. Mater. Eng. 8, 726 (2014).

    Google Scholar 

  22. E.N. Kablov, N.A. Nochovnaya, Y.A. Gribkov, and A.A. Shiriaev, Inorg. Mater. Appl. Res. 8, 837 (2017).

    Article  Google Scholar 

  23. R.P. Kolli and A. Devaraj, Metals 8, 506 (2018).

    Article  Google Scholar 

  24. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).

    Article  Google Scholar 

  25. F. Rupp, J. Geis-Gerstorfer, and K.E. Geckeler, Adv. Mater. 8, 254 (1996).

    Article  Google Scholar 

  26. T. Nishimura, J. Power Energy Syst. 2, 530 (2008).

    Article  Google Scholar 

  27. M.L. Witten, P.R. Sheppard, and B.L. Witten, Chem. Biol. Interact. 196, 87 (2012).

    Article  Google Scholar 

  28. M.S. Bălţatu, P. Vizureanu, M.H. Ţierean, M.G. Minciună, and D.C. Achiţei, Adv. Mat. Res. 1128, 105 (2015).

    Google Scholar 

  29. D. Yang, Z. Guo, H. Shao, X. Liu, and Y. Ji, Procedia Eng. 36, 160 (2012).

    Article  Google Scholar 

  30. M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacquesa, and F. Prima, Scr. Mater. 66, 749 (2012).

    Article  Google Scholar 

  31. T. Furuta, S. Kuramoto, J. Hwang, K. Nishino, and T. Saito, Mater. Trans. 46, 3001 (2005).

    Article  Google Scholar 

  32. L.C. Campanelli, F.G. Coury, Y. Guo, P.S. Carvalho, P. da Silva, M.J. Kaufman, and C. Bolfarini, Mater. Sci. Eng. A 729, 323 (2018).

    Article  Google Scholar 

  33. J.A. Disegi, M.D. Roach, R.D. McMillan, and B.T. Shultzabarger, J. Biomed. Mater. Res. B Appl. Biomater. 105, 2010 (2017).

    Article  Google Scholar 

  34. M. Buzatu, Ş.I. Ghica, M.I. Petrescu, V. Geantă, R. Ştefănoiu, G. Iacob, M. Buţu, and E. Vasile, Mater. Plast. 54, 596 (2017).

    Google Scholar 

  35. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Science 300, 464 (2003).

    Article  Google Scholar 

  36. M. Buzatu, Ş.I. Ghica, E. Vasile, V. Geantă, R. Ştefănoiu, M.I. Petrescu, G. Iacob, and M. Buţu, U.P.B. Sci. Bull. Ser. B 78, 161 (2016).

    Google Scholar 

  37. A. Wadood, T. Inamura, Y. Yamabe-Mitarai, and H. Hosoda, Mater. Trans. 54, 566 (2013).

    Article  Google Scholar 

  38. P. Manda, A. Pathak, A. Mukhopadhyay, U. Chakkingal, and A.K. Singh, J. Appl. Res. Technol. 15, 21 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by The National Grant GNaC2018 ARUT. We hereby acknowledge the research funds project GNaC2018 ARUT (Internal No. SM 35-18-02/2018) for providing the infrastructure used in this work and the project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Iacob.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzatu, M., Geantă, V., Ştefănoiu, R. et al. Influence of the Tungsten Content on the Elastic Modulus of New Ti-15Mo-W Alloys Intended for Medical Applications. JOM 71, 2272–2279 (2019). https://doi.org/10.1007/s11837-019-03512-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03512-w

Navigation