Skip to main content

Advertisement

Log in

Thermal and Electrical Properties of Highly Dense Ceramic Materials Based on Co-doped LaYO3

  • Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solid oxide electrolytes showing proton transport are extensively studied materials, which can be utilised in different types of highly efficient energy systems such as solid oxide fuel cells, solid oxide electrolysis cells, membrane converters and sensors. Here we present the results of a study of the functional properties of LaYO3-based materials, which exhibit higher chemical stability than the more well known proton-conducting electrolytes, cerates and zirconates of alkaline earth elements. The structural, ceramic, thermal and electrical properties of La0.9Sr0.1YO3–δ have been thoroughly studied depending on the partial Y substitution with some lanthanides (10 mol.% of Yb, Dy, Ho). According to the experimental data, La0.9Sr0.1Y0.9Yb0.1O3−δ can be considered a promising alternative to the basic oxide because of its better transport properties and the fact that there are no detrimental changes in other functional characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.C.C. Souza and R. Muccillo, J. Mater. Res. 13, 3 (2010).

    Google Scholar 

  2. R. Haugsrud, Diff. Found. 8, 31 (2016).

    Article  Google Scholar 

  3. N. Kochetova, I. Animitsa, D. Medvedev, A. Demin, and P. Tsiakaras, RSC Adv. 6, 73222 (2016).

    Article  Google Scholar 

  4. S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, and A.K. Azad, Renew. Sustain. Energy Rev. 79, 750 (2017).

    Article  Google Scholar 

  5. N. Ito, M. Iijima, K. Kimura, and S. Iguchi, J. Power Sour. 152, 200 (2005).

    Article  Google Scholar 

  6. N. Ito, S. Aoyama, T. Masui, S. Matsumoto, H. Matsumoto, and T. Ishihara, J. Power Sour. 185, 922 (2008).

    Article  Google Scholar 

  7. K. Katahira, H. Matsumoto, H. Iwahara, K. Koide, and T. Iwamoto, Sens. Actuators B Chem. 73, 130 (2001).

    Article  Google Scholar 

  8. T. Yajima, K. Koide, H. Takai, N. Fukatsu, and H. Iwahara, Solid State Ion. 79, 333 (1995).

    Article  Google Scholar 

  9. C.O. Park, J.W. Fergus, N. Miura, J. Park, and A. Choi, Ionics 15, 261 (2009).

    Article  Google Scholar 

  10. U. Röder-Roith, F. Rettig, K. Sahnera, T. Röder, J. Janek, and R. Moos, Solid State Ion. 192, 101 (2011).

    Article  Google Scholar 

  11. T. Sakai, K. Isa, M. Matsuka, T. Kozai, Y. Okuyama, T. Ishihara, and H. Matsumoto, Int. J. Hydrog. Energy 38, 6842 (2013).

    Article  Google Scholar 

  12. N.S. Patki, A. Manerbino, J.D. Way, and S. Ricote, Solid State Ion. 317, 256 (2018).

    Article  Google Scholar 

  13. T. Sakai, S. Matsushita, H. Matsumoto, S. Okada, S. Hashimoto, and T. Ishihara, Int. J. Hydrog. Energy 34, 56 (2009).

    Article  Google Scholar 

  14. N. Danilov, A. Tarutin, J. Lyagaeva, G. Vdovin, and D. Medvedev, J. Mater. Chem A 6, 16341 (2018).

    Article  Google Scholar 

  15. W. Deibert, M.E. Ivanova, S. Baumann, O. Guillon, and W.A. Meulenberg, J. Membr. Sci. 543, 79 (2017).

    Article  Google Scholar 

  16. A. Vourros, V. Kyriakou, I. Garagounis, E. Vasileiou, and M. Stoukides, Solid State Ion. 306, 76 (2017).

    Article  Google Scholar 

  17. T. Takahashi and H. Iwahara, Rev Chim. Miner. 17, 543 (1980).

    Google Scholar 

  18. J. Lyagaeva, N. Danilov, G. Vdovin, J. Bu, D. Medvedev, A. Demin, and P. Tsiakaras, J. Mater. Chem. A 4, 40 (2016).

    Article  Google Scholar 

  19. D.A. Medvedev, J.G. Lyagaeva, E.V. Gorbova, A.K. Demin, and P. Tsiakaras, Prog. Mater Sci. 75, 38 (2016).

    Article  Google Scholar 

  20. D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, and P. Tsiakaras, Prog. Mater Sci. 60, 72 (2014).

    Article  Google Scholar 

  21. J. Lu, L. Wang, L. Fan, Y. Li, L. Dai, and H. Guo, J. Rare Earths 26, 505 (2008).

    Article  Google Scholar 

  22. Y. Okuyama, T. Kozai, T. Sakai, M. Matsuka, and H. Matsumoto, Electrochim. Acta 95, 54 (2013).

    Article  Google Scholar 

  23. I. Animitsa, A. Iakovleva, and K. Belova, J. Solid State Chem. 238, 156 (2016).

    Article  Google Scholar 

  24. T. Tu, B. Zhang, J. Liu, K. Wu, and K. Peng, Electrocim. Acta 283, 1366 (2018).

    Article  Google Scholar 

  25. B. Zhang, Z. Zhong, T. Tu, K. Wu, and K. Peng, J. Power Sour. 412, 631 (2018).

    Article  Google Scholar 

  26. L. Hakimova, A. Kasyanova, A. Farlenkov, J. Lyagaeva, D. Medvedev, A. Demin, and P. Tsiakarasa, Ceram. Int. 45, 209 (2019).

    Article  Google Scholar 

  27. Y. Okuyama, S. Ikeda, T. Sakai, and H. Matsumoto, Solid State Ion. 262, 338 (2014).

    Article  Google Scholar 

  28. Y. Okuyama, T. Kozai, S. Ikeda, M. Matsuka, T. Sakai, and H. Matsumoto, Electrochim. Acta 125, 443 (2014).

    Article  Google Scholar 

  29. N.A. Shafiqa, M.S. Idris, C.A. SalmieSuhana, R.A.M. Osman, and T.Q. Tan, Mater. Sci. Forum 819, 117 (2015).

    Article  Google Scholar 

  30. V.B. Balakireva, A.Yu. Stroeva, and V.P. Gorelov, Russ. J. Electrochem. 41, 535 (2005).

    Article  Google Scholar 

  31. Web-site of Institute of High Temperature Electrochemistry. http://www.ihte.uran.ru/?Page_id=3106. Accessed 20 March 2019.

  32. FullProf Suite. https://www.ill.eu/sites/fullprof/php/downloads.html. Accessed 20 March 2019.

  33. GetData Graph Digitizer. http://getdata-graph-digitizer.com/index.php. Accessed 20 March 2019.

  34. C.A. SalmieSuhana, N.S. Hazwani, N.A. Shafiqa, and W.N. ImaduddinHelmi, Adv. Mater. Res. 795, 513 (2013).

    Article  Google Scholar 

  35. B.-X. Liu, Q. Yang, Y.-X. Guo, C. Chen, G.-L. Ma, and H.-T. Wang, Chin. J. Inorg. Chem. 25, 278 (2009).

    Google Scholar 

  36. M. Mizuno, A. Rouanet, T. Yamada, and T. Noguchi, Yogyo-Kyokai-Shi 84, 7 (1976).

    Article  Google Scholar 

  37. J. Coutures, A. Rouanet, R. Verges, and M. Foex, J. Solid State Chem. 17, 172 (1976).

    Google Scholar 

  38. V.P. Gorelov, Z.S. Martem’yanova, and V.B. Balakireva, Inorg. Mater. 35, 153 (1999).

    Google Scholar 

  39. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926).

    Article  Google Scholar 

  40. C. Artini, M. Pani, A. Lausi, and G.A. Costa, J. Phys. Chem. Solids 91, 93 (2016).

    Article  Google Scholar 

  41. G.A. Tompsett, R.J. Phillips, N.M. Sammes, and A.M. Cartner, Solid State Commun. 108, 655 (1998).

    Article  Google Scholar 

  42. A. Siaï, P. Haro-Gonzalez, K. HorchaniNaifer, and M. Ferid, Opt. Mater. 76, 34 (2018).

    Article  Google Scholar 

  43. C. Artini, J. Eur. Ceram. Soc. 37, 427 (2017).

    Article  Google Scholar 

  44. Y.-C. Wu and C.-R. Rao, Ceram. Int. 44, 19706 (2018).

    Article  Google Scholar 

  45. S.L. Reis and E.N.S. Muccillo, Ionics 24, 1693 (2018).

    Article  Google Scholar 

  46. A.V. Kuzmin, A. Yu Stroeva, M.S. Plekhanov, V.P. Gorelov, and A.S. Farlenkov, Int. J. Hydrog. Energy 43, 19206 (2018).

    Article  Google Scholar 

  47. A.V. Kuzmin, A.S. Lesnichyova, M.S. Plekhanov, AYu Stroeva, V.A. Vorotnikov, and A.V. Ivanov, Russ. J. Appl. Chem. 91, 1434 (2018).

    Article  Google Scholar 

  48. D.-K. Lim, H.-N. Im, S.-J. Song, and H.-I. Yoo, Sci. Rep. 7, 486 (2017).

    Article  Google Scholar 

  49. H. Zhu, S. Ricote, C. Duan, R.P. O’Hayre, and R.J. Kee, J. Electrochem. Soc. 165, F845 (2018).

    Article  Google Scholar 

  50. D.-K. Lim, T.-R. Lee, B. Singh, J.-Y. Park, and S.-J. Song, J. Electrochem. Soc. 161, F710 (2014).

    Article  Google Scholar 

  51. W. Wang, D. Medvedev, and Z. Shao, Adv. Funct. Mater. 28, 1802592 (2018).

    Article  Google Scholar 

  52. V. Besikiotis, C.S. Knee, I. Ahmed, R. Haugsrud, and T. Norby, Solid State Ion. 228, 1 (2012).

    Article  Google Scholar 

  53. E.P. Antonova, M.V. Ananyev, A.S. Farlenkov, E.S. Tropin, A.V. Khodimchuk, and N.M. Porotnikova, Russ. J. Electrochem. 53, 651 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed according to the budgetary plans of the Institute of High Temperature Electrochemistry. Dr. Dmitry Medvedev is also grateful to the Council of the President of the Russian Federation (scholarship  СП-161.2018.1). The characterisation of powder and ceramic materials was carried out at the Shared Access Centre “Composition of Compounds” of the Institute of High Temperature Electrochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Medvedev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasyanova, A., Tarutina, L., Lyagaeva, J. et al. Thermal and Electrical Properties of Highly Dense Ceramic Materials Based on Co-doped LaYO3. JOM 71, 3789–3795 (2019). https://doi.org/10.1007/s11837-019-03498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03498-5

Navigation