Skip to main content
Log in

Research on the Large Plastic Deformation Damage and Shock Resistance of 7055 Aluminum Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We used the split Hopkinson dynamic impact test and ABAQUS finite element simulation to study the damage mechanism of dynamic impacts on the 7055-T4 aluminum alloy. The results show that the energy absorption phenomenon occurs when the dynamic impact temperature is 220°C. There is a clear positive correlation between the size of the precipitated phase and the dynamic impact temperature. The regression effect of the 7055-T4 aluminum alloy is most obvious when the dynamic impact temperature is 320°C. The adiabatic temperature rise model in the dynamic impact shear zone and the damage model considering the adiabatic temperature increase are established. Moreover, the above model has high accuracy and is verified by projectile impact simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Yang, X. Li, C. Xu, L. Zhang, Q. Zhang, and X. Tong, J. Mater. Eng. Perform. 21, 197 (2012).

    Article  Google Scholar 

  2. Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, Mater. Des. 51, 592 (2013).

    Article  Google Scholar 

  3. M. Tajally, Z. Huda, and H.H. Masjuki, Int. J. Impact Eng. 37, 425 (2010).

    Article  Google Scholar 

  4. Y. Cao, A. Feng, and G. Hua, J. Appl. Phys. 116, 775 (2014).

    Google Scholar 

  5. P. Zhang and Y. Wang, Vacuum 152, 150 (2018).

    Article  Google Scholar 

  6. A.S. Mahdi, M.S. Mustapa, A.L.M. Tobi, and I. Zaman, Mater. Sci. Forum 887, 74 (2017).

    Article  Google Scholar 

  7. K. Labisz, T. Tański, D. Janicki, W. Borek, K. Lukaszkowicz, and L. Dobrzański, Arch. Metall. Mater. 61, 741 (2016).

    Article  Google Scholar 

  8. K.K. Babu, K. Panneerselvam, P. Sathiya, A.N. Haq, S. Sundarrajan, P. Mastanaiah, and C.V. Srinivasa Murthy, Mater. Today Proc. 4, 285 (2017).

    Article  Google Scholar 

  9. P. Zhang and Y. Wang, Vacuum 151, 243 (2018).

    Article  Google Scholar 

  10. J. Konieczny, K. Labisz, M. Polokrubiniec, and A. Włodarczykfligier, Arch. Metall. Mater. 61, 1337 (2016).

    Article  Google Scholar 

  11. M. Qi, C. Luo, H. He, Y. Wang, D. Fan, and S. Yan, J. Appl. Phys. 111, 043506 (2012).

    Article  Google Scholar 

  12. J.Z. Lu, K.Y. Luo, Y.K. Zhang, J.Z. Zhou, X.G. Cui, L. Zhang, and J.W. Zhong, Mater. Sci. Eng. A-Struct. 528, 730 (2010).

    Article  Google Scholar 

  13. L. Oger, E. Andrieu, G. Odemer, L. Peguet, and C. Blanc, Mater. Sci. Forum 877, 1107 (2017).

    Google Scholar 

  14. Z. Zhan, W. Hu, Q. Meng, and S. Shi, Int. J. Damage Mech. 25, 342 (2016).

    Article  Google Scholar 

  15. C. Su, J. Zhou, X. Meng, and S. Huang, Materials 9, 799 (2016).

    Article  Google Scholar 

  16. B. Çevik, Y. Özçatalbaş, and B. Gülenç, Prakt. Metallogr-PR M 53, 6 (2016).

    Article  Google Scholar 

  17. R. Singh, R.K. Khatirkar, R.N. Chouhan, and S.G. Sapate, Trans. Indian Inst. Met. 69, 1 (2016).

    Article  Google Scholar 

  18. M. Sharma, G.K. Gupta, R. Dasgupta, M. Kumar, and P. Kumar, Trans. Indian Inst. Met 36, 1 (2018).

    Google Scholar 

  19. J.M. Liang, C. Kong, M.Z. Quadir, Y.F. Zheng, X. Yao, P. Munroe, and D.L. Zhang, Mater. Sci. Eng. A-Struct. 658, 192 (2016).

    Article  Google Scholar 

  20. A. Kumar, A. Patnaik, and I.K. Bhat, Powder Metall. 125, 1 (2017).

    Google Scholar 

  21. D. Bolibruchová, L. Richtárech, S.M. Dobosz, and K. Majorgabryś, Arch. Metall. Mater. 62, 339 (2017).

    Article  Google Scholar 

  22. W.S. Lee, W.C. Sue, C.F. Lin, and C.J. Wu, J. Mater. Process. Tech. 100, 116 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of the China Youth Fund and the First Project (No. 51705270), National Natural Science Foundation of China (51575289), Shandong Natural Science Foundation Doctoral Fund (No. ZR2016EEP03) and A Project of the Shandong Province Higher Educational Science and Technology Program (No. J17KA0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, Y., Luo, H. et al. Research on the Large Plastic Deformation Damage and Shock Resistance of 7055 Aluminum Alloy. JOM 71, 2380–2387 (2019). https://doi.org/10.1007/s11837-019-03477-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03477-w

Navigation