Skip to main content
Log in

TiN-Ni Cermets with High Oxidation Resistance and Electrical Conductivity as Candidates for Intermediate-Temperature Solid Oxide Fuel Cell Interconnects

  • Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Novel TiN-Ni cermets with high oxidation resistance and excellent electrical conductivity were developed and evaluated as intermediate-temperature solid oxide fuel cells (IT-SOFCs) interconnects. Three TiN-Ni cermets with 30 vol.%, 50 vol.% and 70 vol.% Ni were prepared by optimizing hot-pressed sintering parameters. Their oxidation kinetics was systematically investigated in air at 600–800°C. Relative density, oxidation rate constant and electrical conductivity can be readily optimized by adjusting the Ni content in the cermets, and their corresponding maximum values reached 99.6%, 2.56 × 10−11 g2 cm−4 s−1 (at 800°C) and 1.5 × 104 S cm−1 (500 h oxidation reaction at 800°C). Coefficient of thermal expansion could be adjusted as well in the 9.7 × 10−6 k−1 to 13.2 × 10−6 k−1 range to match with the IT-SOFCs components. The electrical conductivity of all samples studied in this work was above 1.0 × 104 S cm−1, which is much higher than that of all other cermets reported in the literature. We demonstrated that TiN-Ni cermets are promising material as candidates for IT-SOFCs interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.C. Tucker, J. Power Sourc. 195, 4570 (2010).

    Article  Google Scholar 

  2. B. Timurkutluk, C. Timurkutluk, M.D. Mat, and Y. Kaplan, Renew. Sustain. Energy Rev. 56, 1101 (2016).

    Article  Google Scholar 

  3. N. Shaigan, W. Qu, D.G. Ivey, and W.X. Chen, J. Power Sourc. 195, 1529 (2010).

    Article  Google Scholar 

  4. J.W. Fergus, Mater. Sci. Eng. A 397, 271 (2005).

    Article  Google Scholar 

  5. W.Z. Zhu and S.C. Deevi, Mater. Sci. Eng. A 348, 227 (2003).

    Article  Google Scholar 

  6. J.W. Wu and X.B. Liu, J. Mater. Sci. Technol. 26, 293 (2010).

    Article  Google Scholar 

  7. Y. Liu and J. Zhu, Int. J. Hydrog. Energy 35, 7936 (2010).

    Article  Google Scholar 

  8. D. Simwonis, A. Naoumidis, F.J. Dias, and J. Linke, J. Mater. Res. 12, 1508 (1997).

    Article  Google Scholar 

  9. Z.G. Yang, M.S. Walker, P. Singh, J.W. Stevenson, and T. Norby, J. Electrochem. Soc. 151, B669 (2004).

    Article  Google Scholar 

  10. F.A. Unal, M.D. Mat, I. Demir, Y. Kaplan, and N. Veziroglu, Int. J. Hydrog. Energy 40, 7689 (2015).

    Article  Google Scholar 

  11. X.B. Chen, B. Hua, J. Pu, J. Li, L. Zhang, and S.P. Jiang, Int. J. Hydrog. Energy 34, 5737 (2009).

    Article  Google Scholar 

  12. K. Fujita, K. Ogasawara, Y. Matsuzaki, and T. Sakurai, J. Power Sourc. 131, 261 (2004).

    Article  Google Scholar 

  13. G.Y. Chen, X.S. Xin, T. Luo, L.M. Liu, Y.C. Zhou, C. Yuan, C.C. Lin, Z.L. Zhan, and S.R. Wang, J. Power Sourc. 278, 230 (2015).

    Article  Google Scholar 

  14. Y. Zhang, P.Y. Guo, Y. Shao, Y.B. Lai, and J.Q. Zhang, J. Alloys Compd. 680, 685 (2016).

    Article  Google Scholar 

  15. X.S. Xin, S.R. Wang, J.Q. Qian, C.C. Lin, Z.L. Zhan, and T.L. Wen, Int. J. Hydrog. Energy 37, 471 (2012).

    Article  Google Scholar 

  16. S. Joshi and A. Petric, Int. J. Hydrog. Energy 8, 5584 (2017).

    Article  Google Scholar 

  17. T. Huber, H.P. Degischer, G. Lefranc, and T. Schmitt, Compos. Sci. Technol. 66, 2206 (2006).

    Article  Google Scholar 

  18. S. Gopagoni, J.Y. Hwang, A.R.P. Singh, B.A. Mensah, N. Bunce, J. Tiley, T.W. Scharf, and R. Banerjee, J. Alloys Compd. 509, 1255 (2011).

    Article  Google Scholar 

  19. Q. Qi, Y. Liu, and Z.R. Hung, Scr. Mater. 109, 56 (2015).

    Article  Google Scholar 

  20. Z.Z. Fu, K.C. Mondal, and R. Koc, Ceram. Int. 42, 9995 (2016).

    Article  Google Scholar 

  21. Q.L. Lin and R. Sui, J. Alloys Compd. 649, 505 (2015).

    Article  Google Scholar 

  22. C.S. Park, C.H. Kim, M.H. Kim, and C. Lee, Mater. Chem. Phys. 88, 46 (2004).

    Article  Google Scholar 

  23. K.H. Jo, J.H. Kim, K.M. Kim, I.S. Lee, and S.J. Kim, Int. J. Hydrog. Energy 40, 9523 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51671209). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Liu, Y., Qi, Q. et al. TiN-Ni Cermets with High Oxidation Resistance and Electrical Conductivity as Candidates for Intermediate-Temperature Solid Oxide Fuel Cell Interconnects. JOM 71, 3782–3788 (2019). https://doi.org/10.1007/s11837-019-03418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03418-7

Navigation