Skip to main content
Log in

Low-Cost Mechanically Alloyed Copper-Based Composite Reinforced with Silicate Glass Particles for Thermal Applications

  • Effective Production and Recycling of Powder Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A nanocrystalline copper-based composite reinforced with 40 vol.% silicate glass particles was successfully produced by mechanical alloying followed by hot pressing. The raw materials of crushed copper chips and soda-lime glass debris were processed in a planetary ball mill for up to 7 h. It was shown that silicate glass as alloying addition has a positive effect on the strengthening of copper and decreases its thermal expansion coefficient. During mechanical alloying, the microhardness of the composite powder particles increases to about 320 HV. The hot-pressed material demonstrates good thermal stability and increased compressive strength compared with consolidated milled copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Th Schubert, B. Trindade, T. Weißgärber, and B. Kieback, Mater. Sci. Eng. A 475, 39 (2008).

    Article  Google Scholar 

  2. Y. Zhan and G. Zhang, Mater. Lett. 57, 4583 (2003).

    Article  Google Scholar 

  3. G. Celebi Efe, S. Zeytin, and C. Bindal, Mater. Des. 36, 633 (2012).

    Article  Google Scholar 

  4. S.F. Moustafa, Z. Abdel-Hamid, and A.M. Abd-Elhay, Mater. Lett. 53, 244 (2002).

    Article  Google Scholar 

  5. O.S. Fatoba, O. Popoola, and A.P.I. Popoola, Silicon 7, 351 (2015).

    Article  Google Scholar 

  6. A. Fathy and E.-K. Omyma, Mater. Des. 46, 355 (2013).

    Article  Google Scholar 

  7. K.-M. Shu and G.C. Tu, Mater. Sci. Eng. A 349, 236 (2003).

    Article  Google Scholar 

  8. L. Guobin, S. Jibing, G. Quanmei, and W. Ru, J. Mater. Process. Technol. 170, 336 (2005).

    Article  Google Scholar 

  9. F. Shehata, A. Fathy, M. Abdelhameed, and S.F. Moustafa, Mater. Des. 30, 2756 (2009).

    Article  Google Scholar 

  10. A. Luedtke, Adv. Eng. Mater. 6, 142 (2004).

    Article  Google Scholar 

  11. D.D.L. Chung, Materials for Electronic Packaging (Boston: Butterworth-Heinemann, 1995).

    Google Scholar 

  12. M. Ekpu, R. Bhatti, N. Ekere, and S. Mallik, in Proceedings of the 18th European Microelectronics and Packaging Conference, Brighton, UK (2011).

  13. J.S. Benjamin and T.E. Volin, Metall. Trans. 5, 1929 (1974).

    Article  Google Scholar 

  14. C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001).

    Article  Google Scholar 

  15. R. Sundaresan and F.H. Froes, JOM 39, 22 (1987).

    Article  Google Scholar 

  16. L. Lü and M.O. Lai, Mechanical Alloying (Boston: Kluwer Academic, 1998).

    Book  Google Scholar 

  17. M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, and A. Simchi, Mater. Des. 52, 881 (2013).

    Article  Google Scholar 

  18. M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, E.Y. Yoon, H.S. Kim, and A. Simchi, Mater. Sci. Eng. A 568, 33 (2013).

    Article  Google Scholar 

  19. K.R. Ramkumar, S. Ilangovan, S. Sivasankaran, and A.S. Alaboodi, J. Alloys Compd. 688, 518 (2016).

    Article  Google Scholar 

  20. K.R. Ramkumar, S. Sivasankaran, and A.S. Alaboodi, J. Alloys Compd. 709, 129 (2017).

    Article  Google Scholar 

  21. M.F. Zawraha, H.A. Zayed, R.A. Essawy, and A.H. Nassar, Mater. Des. 46, 485 (2013).

    Article  Google Scholar 

  22. D. Nunesa, V. Livramento, R. Mateusa, J.B. Correia, L.C. Alves, M. Vilarigues, and P.A. Carvalho, Mater. Sci. Eng. A 528, 8610 (2011).

    Article  Google Scholar 

  23. V. Livramento, J.B. Correia, N. Shohoji, and E. Ōsawa, Diam. Relat. Mater. 16, 202 (2007).

    Article  Google Scholar 

  24. A.S. Prosviryakov, M.E. Samoshina, and V.A. Popov, Met. Sci. Heat Treat. 54, 298 (2012).

    Article  Google Scholar 

  25. A.S. Prosviryakov, A.A. Aksenov, M.E. Samoshina, M.G. Kovaleva, and D.O. Ivanov, Powder Metall. 54, 382 (2011).

    Article  Google Scholar 

  26. A.S. Prosviryakov and A.I. Bazlov, Mater. Chem. Phys. 177, 1 (2016).

    Article  Google Scholar 

  27. A.S. Prosviryakov, J. Alloys Compd. 632, 707 (2015).

    Article  Google Scholar 

  28. R. Chakraborty, A. Dey, and A.K. Mukhopadhyay, Metal. Mater. Trans. A 41, 1301 (2010).

    Article  Google Scholar 

  29. M.D. Karkhanavala and F.A. Hummel, J. Am. Ceram. Soc. 35, 215 (1952).

    Article  Google Scholar 

  30. A.C.P. Galvão, A.C.M. Farias, and J.U.L. Mendes, Cerâmica 61, 367 (2015).

    Article  Google Scholar 

  31. E.V. Shelekhov and T.A. Sviridova, Met. Sci. Heat Treat. 42, 309 (2000).

    Article  Google Scholar 

  32. D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113, 1 (1989).

    Article  Google Scholar 

  33. D.G. Morris, Rev. Metal. 46, 173 (2010).

    Article  Google Scholar 

  34. J.Y. Huang, Y.K. Wu, and H.Q. Ye, Mater. Sci. Eng. A 199, 165 (1995).

    Article  Google Scholar 

  35. B.Y. Zong, F. Zhang, G. Wang, and L. Zuo, J. Mater. Sci. 42, 4215 (2007).

    Article  Google Scholar 

  36. H.J. Fecht, E. Hellstem, Z. Fu, and W.L. Johnson, Metall. Trans. A 21, 2333 (1990).

    Article  Google Scholar 

  37. G.K. Williamson and R.E. Smallman III, Philos. Mag. 1, 34 (1956).

    Article  Google Scholar 

  38. M.R. Akbarpour and H.S. Kim, Mater. Des. 83, 644 (2015).

    Article  Google Scholar 

  39. T.J.A. Doe and P. Bowen, Compos. Part A 27, 655 (1996).

    Article  Google Scholar 

  40. N. Ramakrishnan, Acta Mater. 44, 69 (1996).

    Article  Google Scholar 

  41. J. Kováčik and Š. Emmer, Kov. Mater. 49, 411 (2011).

    Google Scholar 

Download references

Acknowledgements

The work was carried out on equipment of the Joint Use Center “Materials Science and Metallurgy” with financial support from the Ministry of Education and Science of the Russian Federation in the framework of the State Assignment to the Universities (Project No. 11.7172.2017/8.9). The authors are grateful to F. O. Milovich, N. Yu. Tabachkova, and B. R. Senatulin for help in this study, and also to the reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Prosviryakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosviryakov, A., Bazlov, A., Pozdniakov, A. et al. Low-Cost Mechanically Alloyed Copper-Based Composite Reinforced with Silicate Glass Particles for Thermal Applications. JOM 71, 995–1001 (2019). https://doi.org/10.1007/s11837-018-3275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3275-4

Navigation