Skip to main content
Log in

Electrospinning 3D Nanofiber Structure of Polycaprolactone Incorporated with Silver Nanoparticles

  • Solid Freeform Fabrication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study presents a one-station 3D fabrication technique of nanofibrous scaffold for tissue engineering. A divergence static electric field was introduced in an electrospinning system to induce a self-assembly of aligned polycaprolactone (PCL) nanofibers into a tunable 3D architecture with thickness ranging from 2 to 12 mm. Silver nanoparticles were incorporated into the PCL solution to alter the electrical conductivity. Human fibroblast cells were cultured on the pure PCL nanofiber scaffolds in vitro for 7 days. It was found that the occurrence of nanofiber bridging phenomenon depended on the solution viscosity. The minimum viscosity to form a 3D nanofiber structure was higher than that to form a 2D nanofiber mat. The homogeneity of nanofiber distribution within the 3D space was positively correlated with the electrical conductivity and the weight of the nanofibers. In the cell culture test, fibroblasts proliferated on the scaffold and organized as an aligned matrix which mimicked the microstructure of native musculoskeletal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Santoro, S.R. Shah, J.L. Walker, and A.G. Mikos, Adv. Drug Deliv. Rev. 107, 206 (2016).

    Article  Google Scholar 

  2. C.J. Connon, Procedia Eng. 110, 15 (2015).

    Article  Google Scholar 

  3. B.M. Holzapfel, F. Wagner, L. Thibaudeau, J.-P. Levesque, and D.M. Hutmacher, Stem Cells 33, 1696 (2015).

    Article  Google Scholar 

  4. A. Skardal, M. Devarasetty, H.-W. Kang, I. Mead, C. Bishop, T. Shupe, S.J. Lee, J. Jackson, J. Yoo, S. Soker, and A. Atala, Acta Biomater. 25, 24 (2015).

    Article  Google Scholar 

  5. P.M. Mendes, Chem. Soc. Rev. 42, 9207 (2013).

    Article  Google Scholar 

  6. B.M. Baker and C.S. Chen, J. Cell Sci. 125, 3015 (2012).

    Article  Google Scholar 

  7. H.P. Shih, D. Panlasigui, V. Cirulli, and M. Sander, Cell Rep. 14, 169 (2016).

    Article  Google Scholar 

  8. C.S. Chen, J. Cell Sci. 121, 3285 (2008).

    Article  Google Scholar 

  9. Y. Zhou and G.Z. Tan, Nanomater. Nanotechnol. 7, 1847980417748478 (2017).

    Article  Google Scholar 

  10. A. Greiner and J.H. Wendorff, Angew. Chem. Int. Ed. 46, 5670 (2007).

    Article  Google Scholar 

  11. X. Wang, B. Ding, and B. Li, Mater. Today 16, 229 (2013).

    Article  Google Scholar 

  12. F. Du, H. Wang, W. Zhao, D. Li, D. Kong, J. Yang, and Y.Y. Zhang, Biomaterials 33, 762 (2012).

    Article  Google Scholar 

  13. M. Ramalingam, M.F. Young, V. Thomas, L. Sun, L.C. Chow, C.K. Tison, K. Chatterjee, W.C. Miles, and C.G. Simon Jr, J. Biomater. Appl. 27, 695 (2013).

    Article  Google Scholar 

  14. Y.J. Son, W.J. Kim, and H.S. Yoo, Arch. Pharm. Res. 37, 69 (2014).

    Article  Google Scholar 

  15. S.B. Orr, A. Chainani, K.J. Hippensteel, A. Kishan, C.L. Gilchrist, N.W. Garrigues, D.S. Ruch, F. Guilak, and D.W. Little, Acta Biomater. 24, 117 (2015).

    Article  Google Scholar 

  16. D. Kai, M.P. Prabhakaran, B. Stahl, M. Eblenkamp, E. Wintermantek, and S. Ramakrishna, Nanotechnology 23, 095705 (2012).

    Article  Google Scholar 

  17. M. Deng, S.G. Kumbar, L.S. Nair, A.L. Weikel, H.R. Allcock, and C.T. Laurencin, Adv. Funct. Mater. 21, 2641 (2011).

    Article  Google Scholar 

  18. B. Wulkersdorfer, K.K. Kao, V.G. Agopian, A. Ahn, J.C. Dunn, B.M. Wu, and M. Stelzner, Int. J. Polym. Sci. (2010). https://doi.org/10.1155/2010/436178.

    Google Scholar 

  19. B. Ostrowska, J. Jaroszewicz, E. Zaczynska, W. Tomaszewski, W. Swieszkowski, and K.J. Kurzydlowsk, Bull. Pol. Acad. Sci. Tech. Sci. 62, 551 (2014).

    Google Scholar 

  20. Y. Zhou and G.Z. Tan, Generation of 3D nanofiber structure by divergence electrospinning for tissue engineering scaffold, in ASME 2018 13th International Manufacturing Science and Engineering Conference. 2018. American Society of Mechanical Engineers, Paper No. MSEC2018-6543

  21. B.E. Mbondo Tsamba, S. Sarraute, M. Traïkia, and P. Husson, J. Chem. Eng. Data 59, 1747 (2014).

    Article  Google Scholar 

  22. P. Gupta, C. Elkins, T.E. Long, and G.L. Wilkes, Polymer 46, 4799 (2005).

    Article  Google Scholar 

  23. S. Huan, G.X. Liu, G.G. Han, W.L. Cheng, Z.Y. Fu, Q.L. Wu, and Q.W. Wang, Materials 8, 2718 (2015).

    Article  Google Scholar 

  24. A. Balogh, B. Farkas, A. Pálvölgyi, A. Domokos, B. Démuth, G. Marosi, and Z.K. Nagy, J. Pharm. Sci. 106, 1634 (2017).

    Article  Google Scholar 

  25. K.A.G. Katsogiannis, G.T. Vladisavljević, and S. Georgiadou, Eur. Polym. J. 69, 284 (2015).

    Article  Google Scholar 

  26. D. Kai, M.J. Tan, M.P. Prabhakaran, B.Q.Y. Chan, S.S. Liow, S. Ramakrishna, and X.J. Loh, Colloids Surf. B 148, 557 (2016).

    Article  Google Scholar 

  27. S. Maharubin, Y. Zhou, and G.Z. Tan, IEEE Trans. Nanotechnol. 17, 948 (2018).

    Article  Google Scholar 

  28. Y. Zhou, S. Maharubin, P. Tran, T. Reid, and G.Z. Tan, Environ. Sci. Water Res. Technol. 4, 1511 (2018).

    Article  Google Scholar 

  29. Z. Tan, E.A. Havell, P.E. Orndorff, and R.A. Shirwaiker, BioMetals 30, 113 (2017).

    Article  Google Scholar 

  30. Z. Tan, G.N. Xu, P.E. Orndorff, and R.A. Shirwaiker, J. Med. Biol. Eng. 36, 325 (2016).

    Article  Google Scholar 

  31. Y. Wang, P.F. Li, P. Xiang, J.T. Lu, J. Yuan, and J. Shen, J. Mater. Chem. B 4, 635 (2016).

    Article  Google Scholar 

  32. Y. Liu, C. Hou, T. Jiao, J. Song, X. Zhang, R. Xing, J. Zhou, L. Zhang, and Q. Peng, Nanomaterials 8, 35 (2018).

    Article  Google Scholar 

  33. S.Y. Chew, R. Mi, A. Hoke, and K.W. Leong, Biomaterials 29, 653 (2008).

    Article  Google Scholar 

  34. L. He, S. Kiao, D. Quan, K. Ma, C. Chan, S. Ramakrishna, and J. Lu, Acta Biomater. 6, 2960 (2010).

    Article  Google Scholar 

  35. T. Jiang, E.J. Carbone, K.W.-H. Lo, and C.T. Laurencin, Prog. Polym. Sci. 46, 1 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Thakurathi, M., Quitevis, E.L. et al. Electrospinning 3D Nanofiber Structure of Polycaprolactone Incorporated with Silver Nanoparticles. JOM 71, 956–962 (2019). https://doi.org/10.1007/s11837-018-3222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3222-4

Navigation