Skip to main content
Log in

Microstructures, Compressive Properties, and Microhardness of NiAl-Cr(Mo) Eutectic Alloys With Various Ni Contents

  • Advances in Superalloys and Other High-Temperature Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructures and mechanical properties of 66(NixAl)-28Cr-6Mo (x = 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5) alloys were investigated using scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscope, microhardness, and compression tests. The microstructure of NiAl-28Cr-6Mo (Ni1.0) eutectic alloy consists of NiAl and Cr(Mo) phases. With increasing the Ni content to 2.0, the microstructure changes from eutectic (Ni1.0) to eutectic + primary NiAl dendrite (Ni1.5 and Ni2.0), and the morphologies of part of precipitates in primary NiAl dendrite evolve from granular to needle-like. When the Ni content increases further, besides eutectic and primary NiAl dendrite, the gray phase forms and is identified as an ordered FCC (L12) (Ni,Cr)3(Al,Mo) phase. Moreover, the more needle-like precipitates emerge in the primary NiAl dendrite of Ni2.5, Ni3.0, and Ni3.5 alloys, and the precipitate is identified as a bcc Cr(Mo) phase. The deep etching reveals that the three-dimensional morphology of Cr(Mo) precipitate is not needle-like but lath-like. Among the investigated alloys, both Ni2.0 and Ni2.5 alloys possess the higher fracture strength and microhardness. The relevant strengthening mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger, Intermetallics 3, 99 (1995).

    Article  Google Scholar 

  2. H. Bei and E.P. George, Acta Mater. 53, 69 (2005).

    Article  Google Scholar 

  3. A. Misra and R. Gibala, Intermetallics 8, 1025 (2000).

    Article  Google Scholar 

  4. J.F. Zhang, J. Shen, Z. Shang, Z.R. Feng, L.S. Wang, and H.Z. Fu, Intermetallics 21, 18 (2012).

    Article  Google Scholar 

  5. D. Yu, H. Bei, Y. Chen, E.P. George, and K. An, Scripta Mater. 84–85, 59 (2014).

    Article  Google Scholar 

  6. D. Yu, K. An, X. Chen, and H. Bei, J. Alloys Compd. 656, 481 (2016).

    Article  Google Scholar 

  7. L. Wang, J. Shen, Z. Shang, and H.Z. Fu, Scripta Mater. 89, 1 (2014).

    Article  Google Scholar 

  8. L. Wang, J. Shen, Y.P. Zhang, and H.Z. Fu, Mater. Sci. Eng. A 664, 188 (2016).

    Article  Google Scholar 

  9. L. Wang and J. Shen, J. Alloys Compd. 663, 187 (2016).

    Article  Google Scholar 

  10. C.Y. Cui, J.T. Guo, Y.H. Qi, and H.Q. Ye, Scripta Mater. 44, 2437 (2001).

    Article  Google Scholar 

  11. J.T. Guo, Ordered Intermetallic Compound NiAl Alloy (Beijing: Science Press, 2003), p. 73.

    Google Scholar 

  12. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo, Intermetallics 27, 14 (2012).

    Article  Google Scholar 

  13. L. Wang and J. Shen, Mater. Mater. Sci. Eng. A 654, 177 (2016).

    Article  Google Scholar 

  14. L. Wang, J. Shen, Z. Shang, J.F. Zhang, J.H. Chen, and H.Z. Fu, Intermetallics 44, 44 (2014).

    Article  Google Scholar 

  15. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo, Trans. Nonferrous Met. Soc. China 23, 983 (2013).

    Article  Google Scholar 

  16. L.Y. Sheng, W. Zhang, J.T. Guo, and H.Q. Ye, Mater. Charact. 60, 1311 (2009).

    Article  Google Scholar 

  17. L. Wang, J. Shen, Y.P. Zhang, L.L. Guo, H.X. Xu, and H.Z. Fu, Intermetallics 84, 11 (2017).

    Article  Google Scholar 

  18. P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, and R. Caram, J. Cryst. Growth 275, e147 (2005).

    Article  Google Scholar 

  19. S. Milenkovic and R. Caram, Metall. Mater. Trans. A 46, 557 (2015).

    Article  Google Scholar 

  20. S. Milenkovic and R. Caram, J. Mater. Process. Technol. 143–144, 629 (2003).

    Article  Google Scholar 

  21. F.J. Wang, Y. Zhang, G.L. Chen, and H.A. Davies, Int. J. Mod. Phys. B 23, 1254 (2009).

    Article  Google Scholar 

  22. F. Otto, A. Dlouhy, Ch. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  23. Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, Sci. Rep. 4, 1 (2014).

    Google Scholar 

  24. Y.P. Lu, X.Z. Gao, J. Li, Z.G. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li, Acta Mater. 124, 143 (2017).

    Article  Google Scholar 

  25. F. He, Z.J. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu, J. Alloys Compd. 656, 284 (2016).

    Article  Google Scholar 

  26. F. He, Z.J. Wang, S.Z. Niu, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, and Y.Y. Dang, J. Alloys Compd. 667, 53 (2016).

    Article  Google Scholar 

  27. F. He, Z.J. Wang, Q.F. Wu, D. Chen, T. Yang, J.J. Li, J.C. Wang, C.T. Liu, and J.J. Kai, Scripta Mater. 155, 134 (2018).

    Article  Google Scholar 

  28. Y.L. Chou, J.W. Yeh, and H.C. Shih, Corros. Sci. 52, 2571 (2010).

    Article  Google Scholar 

  29. H.E. Cline, J.L. Walter, E. Lifshin, and R.R. Russell, Met. Trans. 2, 189 (1970).

    Article  Google Scholar 

  30. Y.F. Han, S.H. Li, and M.C. Chaturvedi, Mater. Sci. Eng. A 160, 271 (1993).

    Article  Google Scholar 

  31. P. Perez, P. Gonzalez, G. Garces, G. Caruana, and P. Adeva, J. Alloys Compd. 302, 137 (2000).

    Article  Google Scholar 

  32. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).

    Article  Google Scholar 

  33. T.T. Shun, C.H. Hung, and C.F. Lee, J. Alloys Compd. 493, 105 (2010).

    Article  Google Scholar 

  34. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).

    Article  Google Scholar 

  35. C.Y. Geng, C.Y. Wang, and T. Yu, Acta Mater. 52, 5427 (2004).

    Article  Google Scholar 

  36. L. Wang, J. Shen, G.J. Zhang, Y.P. Zhang, L.L. Guo, Y.H. Ge, L.H. Gao, and H.Z. Fu, Intermetallics 94, 83 (2018).

    Article  Google Scholar 

  37. L. Wang, G.J. Zhang, J. Shen, Y.P. Zhang, H.X. Xu, Y.H. Ge, and H.Z. Fu, J. Alloys Compd. 732, 124 (2018).

    Article  Google Scholar 

  38. L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou, and H.Q. Ye, J. Alloys Compd. 475, 730 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (51501147, 51601144, 51674196); Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ5013); and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xu, H., Shen, J. et al. Microstructures, Compressive Properties, and Microhardness of NiAl-Cr(Mo) Eutectic Alloys With Various Ni Contents. JOM 70, 2468–2474 (2018). https://doi.org/10.1007/s11837-018-3082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3082-y

Navigation