Skip to main content
Log in

Optimization of Multi-phase Mo-12Si-8.5B Alloy by SiC Whisker

  • Recent Advances in Design and Development of Refractory Metals and Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fine-grained and multi-phase Mo-Si-B alloy contains many grain/phase interfaces, which allows for optimizing its performances by modifying its interfaces. Based on the structure design, this study introduces the SiC whisker in a multi-phase Mo-Si-B alloy. The Mo-12Si-8.5B-SiC alloy, which used a liquid–liquid doping method to mix the SiC whiskers in the mechanical alloyed powder, was also synthesised by hot pressing. The microstructure, strength and toughness were experimentally examined, and the solid-state reaction and thermodynamic calculations were analysed to evaluate the effect of the SiC whisker. Microstructural observations showed that the SiC addition could regulate the phase constitution by markedly increasing the intermetallic content and, moreover, decrease the α-Mo content in the Mo-Si-B alloy. This effect resulted in a change in the microstructure, which was transformed from a continuous α-Mo matrix of the SiC-free Mo-12Si-8.5B alloy to a fine-grained intermetallic matrix of the Mo-12Si-8.5B-SiC alloy. Some SiO2 particles distributed at the grain and phase boundaries could be decreased by the SiC addition, which was mainly related to the grain/phase boundary purifying effect derived from the interfacial reactions of the whisker and matrix. The high strength of the intermetallic matrix with a small amount of silica in the Mo-Si-B-SiC alloy is beneficial for enhancing the strength and fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Kumar and A.P. Alur, Intermetallics 15, 687 (2007).

    Article  Google Scholar 

  2. N. Nomura, T. Suzuki, K. Yoshimi, and S. Hanada, Intermetallics 11, 735 (2003).

    Article  Google Scholar 

  3. A.P. Alur, N. Chollacoop, and K.S. Kumar, Acta Mater. 55, 961 (2007).

    Article  Google Scholar 

  4. Z.H. Tang, A.J. Thom, M.J. Kramer, and M. Akinc, Intermetallics 16, 1125 (2008).

    Article  Google Scholar 

  5. J.S. Park, R. Sakidja, and J.H. Perepezko, Scr. Mater. 46, 765 (2002).

    Article  Google Scholar 

  6. F. Wang, A.D. Shan, X.P. Dong, and J.S. Wu, Scr. Mater. 56, 737 (2007).

    Article  Google Scholar 

  7. D.M. Berczik, US Patent No. 5,595,616 (1997).

  8. J.H. Schneibel, M.J. Kramer, O. Unal, and R.N. Wright, Intermetallics 9, 25 (2001).

    Article  Google Scholar 

  9. J.H. Schneibel, M.J. Kramer, and D.S. Easton, Scr. Mater. 46, 217 (2002).

    Article  Google Scholar 

  10. J.H. Schneibel, Intermetallics 11, 625 (2003).

    Article  Google Scholar 

  11. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Scr. Mater. 50, 459 (2004).

    Article  Google Scholar 

  12. H. Choe, J.H. Schneibel, and R.O. Ritchie, Metall. Mater. Trans. A 34, 225 (2003).

    Article  Google Scholar 

  13. J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli, Metall. Mater. Trans. A 36, 525 (2005).

    Article  Google Scholar 

  14. B.A. Cook, C.A. Bonino, and J.A. Trainham, J. Mater. Sci. 49, 7750 (2014).

    Article  Google Scholar 

  15. B. Li, G.J. Zhang, F. Jiang, S. Ren, G. Liu, and J. Sun, J. Alloys Compd. 609, 80 (2014).

    Article  Google Scholar 

  16. F.A. Rioult, S.D. Imhoff, R. Sakidja, and J.H. Perepezko, Acta Mater. 57, 4600 (2009).

    Article  Google Scholar 

  17. J.I. Jung, N.X. Zhou, and J. Luo, J. Mater. Sci. 47, 8308 (2012).

    Article  Google Scholar 

  18. H.A. Zhang, D.Z. Wang, S.P. Chen, and X.Y. Liu, Mater. Sci. Eng. A 345, 118 (2003).

    Article  Google Scholar 

  19. F. Ye, T.C. Lei, and Y. Zhou, Mater. Sci. Eng. A 281, 305 (2000).

    Article  Google Scholar 

  20. W.W. Dong, S.G. Zhu, T. Bai, and Y.L. Luo, Ceram. Int. 41, 13685 (2015).

    Article  Google Scholar 

  21. L. Sun and J.S. Pan, Mater. Lett. 53, 63 (2002).

    Article  Google Scholar 

  22. B. Li, G.J. Zhang, F. Jiang, S. Ren, G. Liu, and J. Sun, J. Mater. Sci. Technol. 31, 995 (2015).

    Article  Google Scholar 

  23. J. Roger, F. Audubert, and Y.L. Petitcorps, J. Alloys Compd. 475, 635 (2009).

    Article  Google Scholar 

  24. F.J.J. Van Loo, F.M. Smet, G.D. Rieck, and G. Verspui, High Temp. High Press. 14, 25 (1982).

    Google Scholar 

  25. M. Kruger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneible, P. Jehanno, M. Boning, and H. Kestler, Intermetallics 16, 933 (2008).

    Article  Google Scholar 

  26. S. Scudino, G. Liu, M. Sakaliyska, K.B. Surreddi, and J. Eckert, Acta Mater. 57, 4529 (2009).

    Article  Google Scholar 

  27. P.M. Cheng, S.L. Li, G.J. Zhang, J.Y. Zhang, G. Liu, and J. Sun, Mater. Sci. Eng. A 619, 345 (2014).

    Article  Google Scholar 

  28. R. Li, G.J. Zhang, B. Li, X. Chen, S. Ren, J. Wang, and J. Sun, Int. J. Refract. Met. Hard Mater. 68, 65 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This subject was supported by the National Natural Science Foundation of China (Grant Nos. 51701162 and 51674196), the China Postdoctoral Science Foundation (Grant No. 2016M602885), and the Shaanxi Postdoctoral Research Program (Grant No. 2016BSHEDZZ07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Lin, X., Zhang, G. et al. Optimization of Multi-phase Mo-12Si-8.5B Alloy by SiC Whisker. JOM 70, 2529–2536 (2018). https://doi.org/10.1007/s11837-018-3059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3059-x

Navigation