Skip to main content
Log in

Effects of sintering aids on the densification of Mo–Si–B alloys

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of seven sintering aids (0.5 at.% Ni, Co, Fe, Cr, Zr, Nb, and Pd) on the densification of Mo–Si–B alloys of six different compositions (Mo, Mo–0.2Si, Mo–0.2Si–0.02B, Mo–2.5Si–2.5B, Mo–7Si–5B, and Mo–8.9Si–7.7B at.%) are systematically investigated. It was found that Ni, Co, and Fe are effective in enhancing densification of Mo–Si–B alloys, and Ni is the most effective sintering aid. This study supports a previously proposed hypothesis that activated sintering results from enhanced mass transport in the sintering-aid-induced quasi-liquid intergranular films (a type of grain boundary complexion). The relative effectiveness of these sintering aids can be rationalized by analyzing several key thermodynamic parameters that control the stability of premelting-like grain boundary complexions. Future studies are needed to develop interfacial thermodynamic models and methods for computing “grain boundary complexion (phase) diagrams” for multicomponent systems, which can be a useful component for the “Materials Genome” project that will enable better predictions of the activated sintering and other materials phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. German RM (1985) Liquid phase sintering. Plenum Press, New York

    Google Scholar 

  2. Kingery WD (1959) J Appl Phys 30:301

    Article  CAS  Google Scholar 

  3. German RM, Munir ZA (1976) Metall Trans 7A:1873

    CAS  Google Scholar 

  4. Hayden HW, Brophy JH (1963) J Electrochem Soc 110:805

    Article  CAS  Google Scholar 

  5. German RM (1982) Rev Powder Metall Phys Ceram 2:9

    CAS  Google Scholar 

  6. Coble RL, Cannon RM (1978) In: Palmour H III, Davis RF, Hare TM (eds) Processing of crystalline ceramics. Plenum Press, New York

    Google Scholar 

  7. EC Skaar (1977) M.I.T., Cambridge, MA

  8. Luo J, Wang H, Chiang Y-M (1999) J Am Ceram Soc 82:916. doi:10.1111/j.1151-2916.1999.tb01853.x

    Article  CAS  Google Scholar 

  9. Luo J, Gupta VK, Yoon DH, Meyer HM (2005) Appl Phys Lett 87:231902. doi:10.1063/1.2138796

    Article  Google Scholar 

  10. Gupta VK, Yoon DH, Meyer HM III, Luo J (2007) Acta Mater 55:3131. doi:10.1016/j.actamat.2007.01.017

    Article  CAS  Google Scholar 

  11. Luo J (2008) Curr Opin Solid State Mater Sci 12:81. doi:10.1016/j.cossms.2008.12.001

    Article  CAS  Google Scholar 

  12. Luo J, Shi XM (2008) Appl Phys Lett 92:101901. doi:10.1063/1.2892631

    Article  Google Scholar 

  13. Shi X, Luo J (2009) Appl Phys Lett 94:251908. doi:10.1063/1.3155443

    Article  Google Scholar 

  14. Shi X, Luo J (2010) Phys Rev Lett 105:236102. doi:10.1103/PhysRevLett.105.236102

    Article  Google Scholar 

  15. Shi X, Luo J (2011) Phys Rev B 84:014105. doi:10.1103/PhysRevB.84.014105

    Article  Google Scholar 

  16. Luo J (2012) J Am Ceram Soc 95:2358. doi:10.1111/j.1551-2916.2011.05059.x

    Article  CAS  Google Scholar 

  17. Clarke DR (1987) J Am Ceram Soc 70:15

    Article  CAS  Google Scholar 

  18. Clarke DR, Shaw TM, Philipse AP, Horn RG (1993) J Am Ceram Soc 76:1201

    Article  Google Scholar 

  19. Luo J (2007) Crit Rev Solid State Mater Sci 32:67. doi:10.1080/10408430701364388

    Article  CAS  Google Scholar 

  20. Cannon RM, Esposito L (1999) Z Metallkd 90:1002

    CAS  Google Scholar 

  21. Cannon RM, Rühle M, Hoffmann MJ, et al. (2000) Ceramic transactions (grain boundary engineering in ceramics), vol 118. p 427

  22. Scheu C, Dehm G, Kaplan WD (2001) J Am Ceram Soc 84:623

    Article  CAS  Google Scholar 

  23. Avishai A, Scheu C, Kaplan WD (2005) Acta Mater 53:1559

    Article  CAS  Google Scholar 

  24. Baram M, Chatain D, Kaplan WD (2011) Science 332:206

    Article  CAS  Google Scholar 

  25. Luo J, Chiang Y-M (2008) Annu Rev Mater Res 38:227. doi:10.1146/annurev.matsci.38.060407.132431

    Article  CAS  Google Scholar 

  26. Tang M, Carter WC, Cannon RM (2006) Phys Rev B 73:024102

    Article  Google Scholar 

  27. Tang M, Carter WC, Cannon RM (2006) Phys Rev Lett 97:075502

    Article  Google Scholar 

  28. Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Acta Mater 55:6208

    Article  CAS  Google Scholar 

  29. Harmer MP (2010) J Am Ceram Soc 93:301. doi:10.1111/j.1551-2916.2009.03545.x

    Article  CAS  Google Scholar 

  30. Luo J, Cheng H, Asl KM, Kiely CJ, Harmer MP (2011) Science 333:1730. doi:10.1126/science.1208774

    Article  CAS  Google Scholar 

  31. Cahn JW (1977) J Chem Phys 66:3667

    Article  CAS  Google Scholar 

  32. Schick M (1990) In: Charvolin J, Joanny JF, Zinn-Justin J (eds) Les Houches Summer School Lectures. Session XLVIIIElsevier, Amsterdam

    Google Scholar 

  33. Wynblatt P, Saul A, Chatain D (1998) Acta Mater 46:2337. doi:10.1016/s1359-6454(97)00390-x

    CAS  Google Scholar 

  34. Wynblatt P, Chatain D (2008) Mater Sci Eng A 495:119. doi:10.1016/j.msea.2007.09.091

    Article  Google Scholar 

  35. Mishin Y, Boettinger WJ, Warren JA, McFadden GB (2009) Acta Mater 57:3771

    Article  CAS  Google Scholar 

  36. Wang H, Chiang Y-M (1998) J Am Ceram Soc 81:89

    Article  CAS  Google Scholar 

  37. MacLaren I, Cannon RM, Gülgün MA et al (2003) J Am Ceram Soc 86:650

    Article  CAS  Google Scholar 

  38. Straumal BB, Baretzky B (2004) Interface Sci 12:147

    Article  Google Scholar 

  39. Divinski S, Lohmann M, Herzig C, Straumal B, Baretzky B, Gust W (2005) Phys Rev B 71:104104

    Article  Google Scholar 

  40. Rabkin EI, Semenov VN, Shvindlerman LS, Straumal BB (1991) Acta Metall Mater 39:627

    Article  CAS  Google Scholar 

  41. Chang LS, Rabkin E, Straumal BB, Baretzky B, Gust W (1999) Acta Mater 47:4041

    Article  CAS  Google Scholar 

  42. Dimiduk DM, Perepezko JH (2003) MRS Bull 28:639

    Article  CAS  Google Scholar 

  43. Schneibel JH, Ritchie RO, Kruzic JJ, Tortorelli PF (2005) Metall Mater Trans A 36A:525

    Article  CAS  Google Scholar 

  44. Middlemas MR, Cochran JK (2008) JOM 60:19

    Article  CAS  Google Scholar 

  45. Sakidja R, Perepezko JH, Kim S, Sekido N (2008) Acta Mater 56:5223. doi:10.1016/j.actamat.2008.07.015

    Article  CAS  Google Scholar 

  46. Heilmaier M, Kruger M, Saage H et al (2009) JOM 61(7):61. doi:10.1007/s11837-009-0106-7

    Article  CAS  Google Scholar 

  47. Burk S, Gorr B, Kruger M, Heilmaier M, Christ HJ (2011) JOM 63(12):32. doi:10.1007/s11837-011-0203-2

    Article  CAS  Google Scholar 

  48. Cochran JK, Daloz WL, Marshall PE (2011) JOM 63(12):44. doi:10.1007/s11837-011-0206-z

    Article  CAS  Google Scholar 

  49. Rioult FA, Imhoff SD, Sakidja R, Perepezko JH (2009) Acta Mater 57:4600. doi:10.1016/j.actamat.2009.06.036

    Article  CAS  Google Scholar 

  50. Burk S, Gorr B, Christ HJ (2010) Acta Mater 58:6154. doi:10.1016/j.actamat.2010.07.034

    Article  CAS  Google Scholar 

  51. Jain P, Kumar KS (2010) Acta Mater 58:2124. doi:10.1016/j.actamat.2009.11.054

    Article  CAS  Google Scholar 

  52. Yang Y, Bei H, Chen SL, George EP, Tiley J, Chang YA (2010) Acta Mater 58:541. doi:10.1016/j.actamat.2009.09.032

    Article  CAS  Google Scholar 

  53. Dash JG, Rempel AM, Wettlaufer JS (2006) Rev Mod Phys 78:695

    Article  CAS  Google Scholar 

  54. Mellenthin J, Karma A, Plapp M (2008) Phys Rev B 78:184110. doi:18411010.1103/PhysRevB.78.184110

    Article  Google Scholar 

  55. Wynblatt P, Chatain D, Pang Y (2006) J Mater Sci 41:7760. doi:10.1007/s10853-006-0406-z

    Article  CAS  Google Scholar 

  56. Wynblatt P, Chatain D (2007) Metall Mater Trans A 38A:438. doi:10.1007/s11661-006-9039-8

    Article  CAS  Google Scholar 

  57. Serre C, Chatain D, Wynblatt P, Muris M, Bienfait M (2001) Metall Mater Trans A 32A:2851

    Article  CAS  Google Scholar 

  58. Frisk K (1990) CALPHAD 14:311

    Article  CAS  Google Scholar 

  59. Davydov A, Kattner UR (1999) J Phase Equilib 20:5. doi:10.1361/105497199770335893

    Article  CAS  Google Scholar 

  60. Hillert M, Qiu C (1990) Metall Mater Trans A 21:1673. doi:10.1007/bf02672583

    Article  Google Scholar 

  61. Xiong W, Du Y, Liu Y et al (2004) CALPHAD 28:133. doi:10.1016/j.calphad.2004.07.002

    Article  CAS  Google Scholar 

  62. Perez RJ, Sundman B (2003) CALPHAD 27:253. doi:10.1016/j.calphad.2003.09.003

    Article  Google Scholar 

  63. Benedictus R, Böttger A, Mittemeijer EJ (1996) Phys Rev B 54:9109

    Article  CAS  Google Scholar 

  64. Straumal BB, Baretzky B, Kogtenkova OA, Straumal AB, Sidorenko AS (2010) J Mater Sci 45:2057. doi:10.1007/s10853-009-4014-6

    Article  CAS  Google Scholar 

  65. Zhang GJ, Lin XH, Liu G, Zhang NN, Sun J (2011) Int J Refract Metal Hard Mater 29:96. doi:10.1016/j.ijrmhm.2010.08.006

    Article  Google Scholar 

  66. Saage H, Kruger M, Sturm D et al (2009) Acta Mater 57:3895. doi:10.1016/j.actamat.2009.04.040

    Article  CAS  Google Scholar 

  67. Massalski TB, Okamoto H (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  68. Smith JT (1965) J Appl Phys 36:595

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Zhao Zhang for experimental assistance in collecting partial data reported in Fig. 3. We gratefully acknowledge the financial support from the U.S. Air Force Office of Scientific Research (AFOSR) under the grant no. FA9550-10-1-0185 in the Aerospace Materials for Extreme Environments program, and we thank our AFOSR program manager, Dr. Ali Sayir, for his guidance and support. We sincerely thank two anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, JI., Zhou, N. & Luo, J. Effects of sintering aids on the densification of Mo–Si–B alloys. J Mater Sci 47, 8308–8319 (2012). https://doi.org/10.1007/s10853-012-6815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6815-2

Keywords

Navigation