Skip to main content
Log in

Titanium Alloys Manufactured by In Situ Alloying During Laser Powder Bed Fusion

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work is focused on the investigation and understanding of in situ processes in Ti-15%Mo and Ti6Al4V-1.38%Cu alloys by laser powder bed fusion (LPBF). In both materials, Mo and Cu were introduced as elemental powders into the precursor powder mixture. The effect of process parameters, i.e., energy input on surface morphology and homogeneity, was investigated. The importance of different thermophysical properties of blended powders is also discussed. The chemical composition of phases and phase distribution in sintered materials were investigated by means of scanning electron microscopy. The mechanical properties of in situ alloyed as-built LPBF specimens were determined. The results obtained developed knowledge that is important for understanding the in situ alloying process during LPBF, and they create a base for synthesizing new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, Acta Mater. 68, 150 (2014).

    Article  Google Scholar 

  2. M.L.M. Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.-P. Kruth, and J. Van Humbeeck, J. Mater. Process. Technol. 238, 437 (2016).

    Article  Google Scholar 

  3. P. Vora, K. Mumtaz, I. Todd, and N. Hopkinson, Addit. Manuf. 7, 12 (2015).

    Article  Google Scholar 

  4. J.A. Disegi, M.D. Roach, R.D. McMillan, and B.T. Shultzabarger, J. Biomed. Mater. Res. B 105, 2010 (2016).

    Article  Google Scholar 

  5. T. Shirai, H. Tsuchiya, T. Shimizu, K. Ohtani, Y. Zen, and K. Tomita, J. Biomed. Mater. Res. B 91, 373 (2009).

    Article  Google Scholar 

  6. C. Jung, L. Straumann, A. Kessler, U. Pieles, and M. de Wild, BioNanoMat. 15, S180 (2014).

    Google Scholar 

  7. A. Kinnear, T.C. Dzogbewu, I. Yadroitsava, and I. Yadroitsev, in Proceedings of 17th International Conference RAPDASA, Pretoria, South Africa, Nov 2016.

  8. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, J. Mater. Process. Technol. 210, 1624 (2010).

    Article  Google Scholar 

  9. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon, Acta Mater. 51, 1651 (2003).

    Article  Google Scholar 

  10. P.F. Paradis, T. Ishikawa, and S. Yoda, Int. J. Thermophys. 23, 825 (2002).

    Article  Google Scholar 

  11. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R.M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W.A. Wakeham, J. Phys. Chem. Ref. Data 39, 033105:1 (2010).

    Article  Google Scholar 

  12. I. Yadroitsev, P. Bertrand, and I. Smurov, Appl. Surf. Sci. 253, 8064 (2007).

    Article  Google Scholar 

  13. D. Wang, Ch. Yu, X. Zhou, J. Ma, W. Liu, and Z. Shen, Appl. Sci. 7, 430 (2017).

    Article  Google Scholar 

  14. J.R.S. Martins Júnior, R.A. Nogueira, R.O. de Araújo, T.A.G. Donato, V.E. Arana-Chavez, A.P.R.A. Claro, J.C.S. Moraes, M.A.R. Buzalaf, and C.R. Grandini, Mater. Res. 14, 107 (2011).

    Article  Google Scholar 

  15. W.F. Ho, C.P. Ju, and J.H. Lin, Biomaterials 20, 2115 (1999).

    Article  Google Scholar 

  16. I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, Addit. Manuf. 7, 45 (2015).

    Article  Google Scholar 

  17. E. Palik, eds., Handbook of Optical Constants of Solids, 1st ed. (Waltham: Academic Press, 1998), p. 999.

    Google Scholar 

  18. T. Iida and R.I.L. Guthrie, The Thermophysical Properties of Metallic Liquids, Vol. 2, Predictive Models, 1st ed. (New York: Oxford University Press, 2015), pp. 460–461.

    Book  Google Scholar 

  19. I. Van Zyl, M. Moletsane, P. Krakhmalev, I. Yadroitsava, and I. Yadroitsev, S. Afr. J. Ind. Eng. 27, 192 (2016).

    Google Scholar 

  20. M.G. Moletsane, P. Krakhmalev, N. Kazantseva, A. du Plessis, I. Yadroitsava, and I. Yadroitsev, S. Afr. J. Ind. Eng. 27, 110 (2016).

    Google Scholar 

  21. W.F. Ho, J. Alloys Compd. 464, 580 (2008).

    Article  Google Scholar 

  22. S. Guo, Y. Lu, S. Wu, L. Liu, M. He, C. Zhao, Y. Gan, J. Lin, J. Luo, X. Xu, and J. Lin, Mater. Sci. Eng. C 72, 631 (2017).

    Article  Google Scholar 

  23. J.R.S. Martins Jr., R.O. Araújo, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini, Materials 7, 232 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on research supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa (Grant 97994) and the Collaborative Program in Additive Manufacturing (Contract CSIR-NLC-CPAM-15-MOA-CUT-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yadroitsev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadroitsev, I., Krakhmalev, P. & Yadroitsava, I. Titanium Alloys Manufactured by In Situ Alloying During Laser Powder Bed Fusion. JOM 69, 2725–2730 (2017). https://doi.org/10.1007/s11837-017-2600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2600-7

Navigation