Skip to main content
Log in

Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.S. Mishra and M.W. Mahoney: Friction Stir Welding and Processing, ed. (Materials Park, OH: ASM International, 2007).

  2. T.J. Lienert: Friction Stir Welding and Processing, ed. (Materials Park, OH: ASM International, 2007), pp. 123–154.

  3. P.D. Edwards and M. Ramulu, Sci. Technol. Weld. Join. 14, 775 (2009).

    Article  Google Scholar 

  4. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Prog. Mater Sci. 53, 980 (2008).

    Article  Google Scholar 

  5. D. Sanders, P. Edwards, G. Grant, M. Ramulu, and A.P. Reynolds, EuroSPF (France: Carcassonne, 2008).

    Google Scholar 

  6. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005).

    Article  MATH  Google Scholar 

  7. Y. Shang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Mater. Sci. Eng. A 488, 25 (2008).

    Article  Google Scholar 

  8. W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Mater. Lett. 59, 3315 (2005).

    Article  Google Scholar 

  9. A.L. Pilchak, M.C. Juhas, and J.C. Williams, Metall. Mater. Trans. 38A, 401 (2007).

    Article  Google Scholar 

  10. A.L. Pilchak, D.M. Norfleet, M.C. Juhas, and J.C. Williams: Metall. Mater. Trans. 39A, 1519 (2008).

    Article  Google Scholar 

  11. S. Mironov, Y. Zhang, and Y.S. Sato, H. Kokawa. Scripta Mater. 59, 27 (2008).

    Article  Google Scholar 

  12. S. Mironov, Y. Zhang, and Y.S. Sato, H. Kokawa. Scripta Mater. 59, 511 (2008).

    Article  Google Scholar 

  13. A. Lauro, Weld. Int. 26, 8 (2012).

    Article  Google Scholar 

  14. S. Pasta and A.P. Reynolds, Fatigue Fract. Eng. Mater. Struct. 31, 569 (2008).

    Article  Google Scholar 

  15. Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Mater. Sci. Eng. A 485, 448 (2008).

    Article  Google Scholar 

  16. L. Zhou, H.J. Liu, and Q.W. Liu, J. Mater. Sci. (Netherlands) 45, 39 (2010).

    Article  Google Scholar 

  17. L. Zhou, H.J. Liu, and Q.W. Liu, Mater. Des. 31, 2631 (2010).

    Article  Google Scholar 

  18. H.J. Liu, L. Zhou, and Q.W. Liu, Mater. Des. 31, 1650 (2010).

    Article  Google Scholar 

  19. H. Liu, K. Nakata, N. Yamamoto, and J. Liao, Sci. Technol. Weld. Join. 15, 428 (2010).

    Article  Google Scholar 

  20. P.D. Edwards and M. Ramulu, Int. J. Fatigue 70, 171 (2015).

    Article  Google Scholar 

  21. D.G. Sanders, M. Ramulu, E.J. Klock-McCook, P.D. Edwards, A.P. Reynolds, T. Trapp: AeroMat Conference, International Symposium on Superplasticity and Superplastic Forming (SPF), Baltimore, MD 2007

  22. D.G. Sanders: 2007, Development of Friction Stir Welding Combined with Superplastic Forming Processes for the Fabrication of Titanium Structures. PhD Dissertation, University of Washington, Seattle, WA.

  23. E.J. Klock-McCook: Characterization of Friction Stir Welded and Superplasticly Formed Friction Stir Welded Joints of Titanium. Masters Thesis, University of Washington, Seattle, WA.

  24. P.D. Edwards: Experimental and Numerical Characterization of Friction Stir Welded and Superplastically Formed—Friction Stir Welded Titanium. Masters Thesis, University of Washington, Seattle, WA.

  25. M. Ramulu, P. Labossiere, and T. Greenwell, Opt. Lasers Eng. 48, 385 (2010).

    Article  Google Scholar 

  26. M. Ramulu, P. Labossioure, and T. Greenwell, Appl. Mech. Mater. 692, 490 (2014).

    Article  Google Scholar 

  27. P.D. Edwards and M. Ramulu, J. Eng. Mater. Technol. 132, 0310061 (2010).

    Article  Google Scholar 

  28. P.D. Edwards, D.G. Sanders, and M. Ramulu, J. Mater. Eng. Perform. 19, 510 (2010).

    Article  Google Scholar 

  29. D.G. Sanders, M. Ramulu, P.D. Edwards, and A. Cantrell, J. Mater. Eng. Perform. 19, 503 (2010).

    Article  Google Scholar 

  30. P.D. Edwards, D.G. Sanders, M. Ramulu, G. Grant, T. Trapp, and P. Comley, J. Mater. Eng. Perform. 19, 481 (2010).

    Article  Google Scholar 

  31. P. Edwards, M. Ramulu, and D. Sanders, Key Eng. Mater. 433, 169 (2010).

    Article  Google Scholar 

  32. G.D. Sanders and M. Ramulu, Mater. Sci. Forum 735, 395 (2013).

    Article  Google Scholar 

  33. R.W. Fonda and K.E. Knipling, Acta Mater. 58, 6452 (2010).

    Article  Google Scholar 

  34. N. Kulkarni and M. Ramulu: Proceedings of the ASME2014 International Mechanical Engineering Congress & Exposition (IMECE2014), Montreal, 2014, Paper # IMECE2014-39211.

  35. M.J. Donachie, Jr.: Titanium and Titanium Alloys ed. (Materials Park, OH: American Society for Metals, 1982).

  36. Material Property Data, March, 2009, http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641.

Download references

Acknowledgements

The University of Washington acknowledges the support and cooperation of the Boeing Company during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramulu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanders, D.G., Edwards, P., Cantrell, A.M. et al. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties. JOM 67, 1054–1063 (2015). https://doi.org/10.1007/s11837-015-1376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1376-x

Keywords

Navigation