Skip to main content
Log in

Evolution of Quantum Cryptography in Response to the Computational Power of Quantum Computers: An Archival View

  • Survey article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Quantum cryptography (QC), rooted in the principles of quantum mechanics, stands as a beacon of security, offering an unparalleled level of protection against quantum attacks. This exceptional attribute has spurred researchers from diverse scientific disciplines to actively collaborate in advancing the field toward practical implementation. Physicists, computer scientists, engineers, and mathematicians are collectively channeling their efforts, leading to a substantial body of research outcomes. Hence, through this study, we delve into comprehending the multidisciplinary research landscape of QC through scientometrics. Here, we analyze the research outcomes in QC to discern its pattern in terms of publications and citations. Additionally, we identify the most influential countries, authors, and communication sources contributing to various facets of QC. Furthermore, this study also provides a research trajectory that outlines the prevalent research themes and current areas of research in QC. This information serves as a guiding light for newcomers, offering them direction and insight into the dynamic field of QC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. These economic state classifications are by the Economic Analysis and Policy Division (EAPD) of the United Nations Secretariat. For greater details, readers are referred to [76]

References

  1. Iqbal W, Abbas H, Daneshmand M, Rauf B, Bangash YA (2020) An in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined security. IEEE Internet Things J 7(10):10250–10276

    Article  Google Scholar 

  2. Biham E, Shamir A (1991) Differential cryptanalysis of des-like cryptosystems. J Cryptol 4(1):3–72

    Article  MathSciNet  Google Scholar 

  3. Heron S (2009) Advanced encryption standard (aes). Netw Secur 2009(12):8–12

    Article  Google Scholar 

  4. Rivest RL, Shamir A, Adelman L (1978) On Digital Signatures and Public Key p. 24

  5. Diffie W (1976) New direction in cryptography. IEEE Trans Inform Theory 22:472–492

    Article  MathSciNet  Google Scholar 

  6. Steane A (1998) Rep. prog. phys. Rep. Prog. Phys. 61:117

  7. Lindsay JR (2020) Demystifying the quantum threat: infrastructure, institutions, and intelligence advantage. Secur Stud 29(2):335–361

    Article  Google Scholar 

  8. Shor P (1994) Proc. 35th annual symp. on foundations of computer science

  9. Grover LK (1996) In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219

  10. Ekert AK (1991) Quantum cryptography based on bell’s theorem. Phys Rev Lett 67(6):661

    Article  MathSciNet  Google Scholar 

  11. Jasoliya H, Shah K (2022) In 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom) (IEEE), pp. 506–510

  12. Gupta B, Dhawan S, Mamdapur GM (2021) Quantum cryptography research: A scientometric assessment of global publications during 1992–2019. Sci Technol Libr 40(3):282–300

    Article  Google Scholar 

  13. Hess DJ (1997) Science studies: an advanced introduction. NYU Press, New York

    Google Scholar 

  14. Leydesdorff L, Milojević S (2015) Scientometrics. International Encyclopedia of the Social & Behavioral Sciences , 322–327

  15. Coron J (2006) What is cryptography? IEEE Secur Privacy 4(1):70–73

    Article  Google Scholar 

  16. Kościelny C, Kurkowski M, Srebrny M (2013) Modern cryptography primer. Springer, Berlin

    Book  Google Scholar 

  17. Grover LK (1998) Quantum computers can search rapidly by using almost any transformation. Phys Rev Lett 80(19):4329

    Article  Google Scholar 

  18. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464(7285):45–53

    Article  Google Scholar 

  19. Kumar A, Garhwal S (2021) State-of-the-art survey of quantum cryptography. Arch Comput Methods Eng 28:3831–3868

    Article  MathSciNet  Google Scholar 

  20. Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M (2009) The security of practical quantum key distribution. Rev Mod Phys 81(3):1301

    Article  Google Scholar 

  21. Routray SK, Jha MK, Sharma L, Nyamangoudar R, Javali A, Sarkar S (2017) In 2017 International Conference on IoT and Application (ICIOT) (IEEE), pp. 1–4

  22. Renner R (2008) Security of quantum key distribution. Int J Quant Inf 6(01):1–127

    Article  Google Scholar 

  23. Jasoliya H, Shah K (2022) In 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom) (IEEE), pp. 506–510

  24. Dhoha AM, Mashael AK, Ghadeer AA, Manal AA, Al Fosail M, Nagy N (2019) In 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS) (IEEE), pp. 1–6

  25. Elliott C (2004) Quantum cryptography. IEEE Secur Privacy 2(4):57–61

    Article  Google Scholar 

  26. B CH, B G (1984) Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, New York, 1984) p. 175-179

  27. Ortiz J, Sadovsky A, Russakovsky O (2004) Modern cryptography: theory and applications

  28. Haitjema M (2007) A survey of the prominent quantum key distribution protocols. Access Link: https://www.cse.wustl.edujain/cse571-07/ftp/quantum

  29. Bennett CH (1992) Quantum cryptography using any two nonorthogonal states. Phys Rev Lett 68(21):3121

    Article  MathSciNet  Google Scholar 

  30. Hood WW, Wilson CS (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52:291–314

    Article  Google Scholar 

  31. Zhu X, Aryadoust V (2023) A scientometric review of research in translation studies in the twenty-first century. Target 35(2):157–185

    Article  Google Scholar 

  32. Chen C, Song M (2017) Representing scientific knowledge. Representing Scientific Knowledge

  33. Chen C (2017) Science mapping: a systematic review of the literature. J Data Inf Sci 2(2):1–40

    MathSciNet  Google Scholar 

  34. Sahil SK (2021) Sood, Scientometric analysis of natural disaster management research. Nat Hazard Rev 22(2):04021008

    Article  Google Scholar 

  35. Garfield E et al. (1965) In Statistical association methods for mechanized documentation, symposium proceedings, vol. 269 (Citeseer), pp. 189–192

  36. Zuckerman H (1987) Citation analysis and the complex problem of intellectual influence. Scientometrics 12:329–338

    Article  Google Scholar 

  37. Latour B (1987) Science in action: How to follow scientists and engineers through society. Harvard University Press, Cambridge

    Google Scholar 

  38. Gile D (2005) In FORUM. Revue internationale d’interprétation et de traduction/International Journal of Interpretation and Translation, vol. 3 (John Benjamins), pp. 85–103

  39. Li X (2018) Chinese Translation Studies in the 21st Century. Routledge, London, pp 241–262

    Google Scholar 

  40. Lim MH, Aryadoust V (2022) A scientometric review of research trends in computer-assisted language learning (1977–2020). Comput Assist Lang Learn 35(9):2675–2700

    Article  Google Scholar 

  41. Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two documents. J Am Soc Inf Sci 24(4):265–269

    Article  Google Scholar 

  42. White HD, Griffith BC (1981) Author cocitation: a literature measure of intellectual structure. J Am Soc Inf Sci 32(3):163–171

    Article  Google Scholar 

  43. Chen C, Dubin R, Schultz T (2015) In Encyclopedia of Information Science and Technology, Third Edition (IGI Global), pp. 4171–4184

  44. Kumar S (2015) Co-authorship networks: a review of the literature. Aslib J Inf Manag 67(1):55–73

    Article  Google Scholar 

  45. Ravikumar S, Agrahari A, Singh SN (2015) Mapping the intellectual structure of scientometrics: A co-word analysis of the journal scientometrics (2005–2010). Scientometrics 102:929–955

    Article  Google Scholar 

  46. Sahil SK (2021) Sood, Scientometric analysis of natural disaster management research. Nat Hazard Rev 22(2):04021008

    Article  Google Scholar 

  47. Neelam S, Sood SK (2020) A scientometric review of global research on smart disaster management. IEEE Trans Eng Manage 68(1):317–329

    Article  Google Scholar 

  48. Sood SK, Rawat KS (2021) A scientometric analysis of ict-assisted disaster management. Nat Hazards 106(3):2863–2881

    Article  Google Scholar 

  49. Rawat KS, Sood SK (2021) Knowledge mapping of computer applications in education using citespace. Comput Appl Eng Educ 29(5):1324–1339

    Article  Google Scholar 

  50. Sharma P, Gupta V, Sood SK (2023) Post-quantum cryptography research landscape: a scientometric perspective. J Comput Inf Syst 2:1–22

    Google Scholar 

  51. Pal JK (2015) Scientometric dimensions of cryptographic research. Scientometrics 105(1):179–202

    Article  Google Scholar 

  52. Devasena T, Rao PN (2018) Collaboration pattern in cryptography research output (1976–2015): a scientometric study. Int J Libr Inf Sci (IJLIS) 7:2

    Google Scholar 

  53. Baskaran C (2013) Scientometric analysis of cryptography research output. SRELS J Inf Manag 50(4):413–421

    Google Scholar 

  54. Bornmann L, Haunschild R, Scheidsteger T, Ettl C (2019) Quantum technology—a bibliometric analysis of a maturing research field. Max Planck Society

  55. Tolcheev V (2018) Scientometric analysis of the current state and prospects of the development of quantum technologies. Autom Docum Math Linguist 52:121–133

    Article  Google Scholar 

  56. Dhawan S, Gupta B, Bhusan S (2018) Global publications output in quantum computing research: a scientometric assessment during 2007–2016. Emerg Sci J 2(4):228–237

    Article  Google Scholar 

  57. Olijnyk NV (2018) Examination of china’s performance and thematic evolution in quantum cryptography research using quantitative and computational techniques. PLoS ONE 13(1):e0190646

    Article  Google Scholar 

  58. Zakka WP, Lim NHAS, Khun MC (2021) A scientometric review of geopolymer concrete. J Clean Prod 280:124353

    Article  Google Scholar 

  59. Zhao X, Zuo J, Wu G, Huang C (2019) A bibliometric review of green building research 2000–2016. Archit Sci Rev 62(1):74–88

    Article  Google Scholar 

  60. Meho LI, Rogers Y (2008) Citation counting, citation ranking, and h-index of human-computer interaction researchers: a comparison of scopus and web of science. J Am Soc Inform Sci Technol 59(11):1711–1726

    Article  Google Scholar 

  61. Yin X, Liu H, Chen Y, Al-Hussein M (2019) Building information modelling for off-site construction: review and future directions. Autom Constr 101:72–91

    Article  Google Scholar 

  62. Shrivastava R, Mahajan P (2016) Artificial intelligence research in India: a scientometric analysis. Sci Technol Libr 35(2):136–151

    Article  Google Scholar 

  63. Neelam S, Sood SK (2020) A scientometric review of global research on smart disaster management. IEEE Trans Eng Manag 68(1):317–329

    Article  Google Scholar 

  64. Burnham JF (2006) Scopus database: a review. Biomed Digit Libr 3(1):1–8

    Article  Google Scholar 

  65. Pranckutė R (2021) Web of science (wos) and scopus: The titans of bibliographic information in today’s academic world. Publications 9(1):12

    Article  Google Scholar 

  66. Van Eck N, Waltman L (2010) Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

    Article  Google Scholar 

  67. Wang W, Lu C (2020) Visualization analysis of big data research based on citespace. Soft Comput 24(11):8173–8186

    Article  Google Scholar 

  68. Jacomy M, Venturini T, Heymann S, Bastian M (2014) Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE 9(6):e98679

    Article  Google Scholar 

  69. Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F (2012) Scimat: A new science mapping analysis software tool. J Am Soc Inform Sci Technol 63(8):1609–1630

    Article  Google Scholar 

  70. Chen C (2017) Science mapping: a systematic review of the literature. J Data Inf Sci 2(2):1–40

    MathSciNet  Google Scholar 

  71. Van Eck N, Waltman L (2010) Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

    Article  Google Scholar 

  72. Van Eck NJ, Waltman L, Dekker R, Van Den Berg J (2010) A comparison of two techniques for bibliometric mapping: multidimensional scaling and vos. J Am Soc Inform Sci Technol 61(12):2405–2416

    Article  Google Scholar 

  73. Flam F (1991) Quantum cryptography’s only certainty: secrecy. Science 253(5022):858–858

    Article  Google Scholar 

  74. Lord S (1984) The role of citation analysis in the history of science. Argus 13(2):59–65

    Google Scholar 

  75. Tutarel O (2002) Geographical distribution of publications in the field of medical education. BMC Med Educ 2:1–7

    Article  Google Scholar 

  76. United Nations. World Economic Situation and Prospects 2022: Annex (2022). https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2022_ANNEX.pdf

  77. Mayrath MC (2008) Attributions of productive authors in educational psychology journals. Educ Psychol Rev 20:41–56

    Article  Google Scholar 

  78. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145

    Article  Google Scholar 

  79. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81(2):865

    Article  MathSciNet  Google Scholar 

  80. Hillery M, Buzek V, Berthiaume A (1999) Quantum secret sharing. Phys Rev A 59(3):1829

    Article  MathSciNet  Google Scholar 

  81. Bennett CH (1992) Quantum cryptography using any two nonorthogonal states. Phys Rev Lett 68(21):3121

    Article  MathSciNet  Google Scholar 

  82. Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) Experimental quantum cryptography. J Cryptol 5(1):3–28

    Article  Google Scholar 

  83. Bennett CH, Brassard G, Crepeau C, Maurer UM (1995) Generalized privacy amplification. IEEE Trans Inf Theory 41(6):1915–1923

    Article  MathSciNet  Google Scholar 

  84. Regev O (2009) On lattices, learning with errors, random linear codes, and cryptography. J ACM (JACM) 56(6):1–40

    Article  MathSciNet  Google Scholar 

  85. Bennett CH, Brassard G (2020) Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557

  86. Gottesman D, Lo HK, Lutkenhaus N, Preskill J (2004) Security of quantum key distribution with imperfect devices. Quant Inf Comput 2:325–360

    MathSciNet  Google Scholar 

  87. Mayers D (2001) Unconditional security in quantum cryptography. J ACM (JACM) 48(3):351–406

    Article  MathSciNet  Google Scholar 

  88. Fiorentino M, Voss PL, Sharping JE, Kumar P (2002) All-fiber photon-pair source for quantum communications. IEEE Photonics Technol Lett 14(7):983–985

    Article  Google Scholar 

  89. Lyubashevsky V, Peikert C, Regev O (2013) On ideal lattices and learning with errors over rings. J ACM (JACM) 60(6):1–35

    Article  MathSciNet  Google Scholar 

  90. Gao F, Qin SJ, Wen QY, Zhu FC (2010) Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt Commun 283(1):192–195

    Article  Google Scholar 

  91. Renes JM, Blume-Kohout R, Scott AJ, Caves CM (2004) Symmetric informationally complete quantum measurements. J Math Phys 45(6):2171–2180

    Article  MathSciNet  Google Scholar 

  92. Lo HK, Chau HF, Ardehali M (2005) Efficient quantum key distribution scheme and a proof of its unconditional security. J Cryptol 18(2):133–165

    Article  MathSciNet  Google Scholar 

  93. Garfield E et al (1994) The impact factor. Curr Contents 25(20):3–7

    Google Scholar 

  94. Hosseini MR, Martek I, Zavadskas EK, Aibinu AA, Arashpour M, Chileshe N (2018) Critical evaluation of off-site construction research: a scientometric analysis. Autom Constr 87:235–247

    Article  Google Scholar 

  95. Glänzel W, Schubert A (2004) Handbook of quantitative science and technology research. Springer, Berlin, pp 257–276

    Google Scholar 

  96. Geng Y, Zhu R, Maimaituerxun M (2022) Bibliometric review of carbon neutrality with citespace: evolution, trends, and framework. Environ Sci Pollut Res 29(51):76668–76686

    Article  Google Scholar 

  97. Jin R, Zuo J, Hong J (2019) Scientometric review of articles published in asce’s journal of construction engineering and management from 2000 to 2018. J Constr Eng Manag 145(8):06019001

    Article  Google Scholar 

  98. Vazirani U, Vidick T (2019) Fully device independent quantum key distribution. Commun ACM 62(4):133–133

    Article  Google Scholar 

  99. Streltsov A, Augusiak R, Demianowicz M, Lewenstein M (2015) Progress towards a unified approach to entanglement distribution. Phys Rev A 92(1):012335

    Article  Google Scholar 

  100. Gyongyosi L, Imre S (2019) Opportunistic entanglement distribution for the quantum internet. Sci Rep 9(1):2219

    Article  Google Scholar 

  101. Liu T (2020) In Journal of Physics: Conference Series, vol. 1634 (IOP Publishing), p. 012089

  102. Teodoraş DA, Popovici EC, Suciu G, Sachian MA (2023) In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI, vol. 12493 (SPIE), pp. 96–103

  103. Bolokian M, Houshmand M, Sadeghizadeh MS, Parvaneh M (2021) Multi-party quantum teleportation with selective receiver. Int J Theor Phys 60:828–837

    Article  MathSciNet  Google Scholar 

  104. Knight P, Munro W (2015) In Encyclopedia of Optical and Photonic Engineering (Print)-Five Volume Set (CRC Press), pp. 1–10

  105. Jennewein T (2018) In 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM) (IEEE), pp. 217–218

  106. Kaltenbaek R, Acin A, Bacsardi L, Bianco P, Bouyer P, Diamanti E, Marquardt C, Omar Y, Pruneri V, Rasel E et al (2021) Quantum technologies in space. Exp Astron 51(3):1677–1694

    Article  Google Scholar 

  107. Surla RG, Thamarai I (2023) A systematic survey on crypto algorithms using quantum computing. J Theor Appl Inf Technol 101:12

    Google Scholar 

  108. Niestegge G (2017) Quantum key distribution without the wavefunction. Int J Quant Inf 15(06):1750048

    Article  MathSciNet  Google Scholar 

  109. Tyagi AK (2023) Handbook of research on quantum computing for smart environments (IGI Global)

  110. R. Renner, in CLEO: QELS_Fundamental Science (Optica Publishing Group, 2013), pp. QTu2C–1

  111. McLeod J, Majumdar R, Das S (2022) In International Conference on Computational Science (Springer), pp. 164–170

  112. Ziatdinov M (2016) From graphs to keyed quantum hash functions. Lobachevskii J Math 37:705–712

    Article  MathSciNet  Google Scholar 

  113. Ablayev F, Vasiliev A (2013) Cryptographic quantum hashing. Laser Phys Lett 11(2):025202

    Article  Google Scholar 

  114. Bibak K (2022) Quantum key distribution using universal hash functions over finite fields. Quant Inf Process 21(4):121

    Article  MathSciNet  Google Scholar 

  115. Chawla D, Mehra PS (2023) A survey on quantum computing for internet of things security. Proc Comput Sci 218:2191–2200

    Article  Google Scholar 

  116. AbdelHafeez M, Taha M, Khaled EEM, AbdelRaheem M (2019) In 2019 31st International Conference on Microelectronics (ICM) (2019), pp. 113–117

  117. Cui W, Dou T, Yan S (2020) In 2020 39th Chinese control conference (CCC) (IEEE), pp. 5822–5824

  118. Kashyap S, Bhushan B, Kumar A, Nand P (2022) In multimedia technologies in the internet of things environment, Volume 3 (2022), pp. 1–22

  119. Muthumanickam K, Mahesh PS, Ragab M (2023) A review on quantum computing and security. Handbook of research on quantum computing for smart environments. pp. 84–102

  120. Fitzsimons JF (2017) Private quantum computation: an introduction to blind quantum computing and related protocols. NPJ Quant Inf 3(1):23

    Article  Google Scholar 

  121. Man’ko MA, Man’ko VI (2020) Observables, interference phenomenon and born’s rule in the probability representation of quantum mechanics. Int J Quant Inf 18(01):1941021

    Article  MathSciNet  Google Scholar 

  122. Lombardi P, Schauffert H, Colautti M, Pazzagli S, Agio M, Toninelli C (2019) In European Quantum Electronics Conference (Optica Publishing Group), p. eb_7_5

  123. Bozzio M, Vyvlecka M, Cosacchi M, Nawrath C, Seidelmann T, Loredo JC, Portalupi SL, Axt VM, Michler P, Walther P (2022) Enhancing quantum cryptography with quantum dot single-photon sources. NPJ Quant Inf 8(1):104

    Article  Google Scholar 

  124. Ku PC, Teng CH, Deng H (2017) In handbook of GaN semiconductor materials and devices. CRC Press, Boca Raton, pp 661–669

    Google Scholar 

  125. Bozzio M, Vyvlecka M, Cosacchi M, Nawrath C, Seidelmann T, Loredo JC, Portalupi SL, Axt VM, Michler P, Walther P (2022) Enhancing quantum cryptography with quantum dot single-photon sources. NPJ Quant Inf 8(1):104

    Article  Google Scholar 

  126. Wen X, Chen Y, Zhang W, Jiang ZL, Fang J (2024) Quantum protection scheme for privacy data based on trusted center. Opt Laser Technol 169:110130

    Article  Google Scholar 

  127. Porzio A (2014) In 2014 Fotonica AEIT Italian Conference on Photonics Technologies (IEEE), pp. 1–4

  128. Gopinath N, Shyry P (2022) In 2022 Third International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) (IEEE), pp. 1–8

  129. Kumar A, Dadheech P, Singh V, Poonia RC, Raja L (2019) An improved quantum key distribution protocol for verification. J Discr Math Sci Cryptogr 22(4):491–498

    MathSciNet  Google Scholar 

  130. Molotkov SN (2020) On eavesdropping in quantum cryptography through side channels of information leakage. JETP Lett 111(11):653–661

    Article  Google Scholar 

  131. Dusanowski Ł, Moczala-Dusanowska M, Klembt S, Schneider C, Huber T, Höfling S (2022) In 2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM) (IEEE), pp. 1–1

  132. Kalyani NT, Dhoble SJ, Domanska MM, Vengadaesvaran B, Nagabhushana H, Arof AK (2023) Quantum dots: emerging materials for versatile applications. Woodhead Publishing, Sawston

    Google Scholar 

  133. Alami AH, Faraj M (2021) In encyclopedia of smart materials. Elsevier, Amsterdam, pp 183–191

    Google Scholar 

  134. Zhou W, Coleman JJ (2016) Semiconductor quantum dots. Curr Opin Solid State Mater Sci 20(6):352–360

    Article  Google Scholar 

  135. Zhou NR, Liao Q, Zou XF (2022) Multi-party semi-quantum key agreement protocol based on the four-qubit cluster states. Int J Theor Phys 61(4):114

    Article  MathSciNet  Google Scholar 

  136. Yan LL, Zhang SB, Chang Y, Sheng ZW, Yang F (2019) Mutual semi-quantum key agreement protocol using bell states. Mod Phys Lett A 34(35):1950294

    Article  MathSciNet  Google Scholar 

  137. Salvail L, Schaffner C, Sotáková M (2015) Quantifying the leakage of quantum protocols for classical two-party cryptography. Int J Quant Inf 13(04):1450041

    Article  MathSciNet  Google Scholar 

  138. Zhang C, Huang Q, Long Y, Sun Z (2021) Secure three-party semi-quantum summation using single photons. Int J Theor Phys 60(9):3478–3487

    Article  Google Scholar 

  139. Wang Y, Hu P, Xu Q (2021) Quantum secure multi-party summation based on entanglement swapping. Quantum Inf Process 20:1–13

    Article  MathSciNet  Google Scholar 

  140. Wu W, Cai Q, Zhang H, Liang X (2018) Bit-oriented quantum public-key cryptosystem based on bell states. Int J Theor Phys 57:1705–1715

    Article  MathSciNet  Google Scholar 

  141. Wu W, Cai Q, Zhang H, Liang X (2017) Quantum public key cryptosystem based on bell states. Int J Theor Phys 56:3431–3440

    Article  MathSciNet  Google Scholar 

  142. Tao Z, Gao X, Zhang S, Chang Y, Xia J (2019) In Artificial Intelligence and Security: 5th International Conference, ICAIS 2019, New York, NY, USA, July 26–28, 2019, Proceedings, Part IV 5 (Springer), pp. 110–119

  143. Diamanti E (2019) In frontiers in optics (Optica Publishing Group), pp. FW6D–2

  144. Chitambar E, Gour G (2019) Quantum resource theories. Rev Mod Phys 91(2):025001

    Article  MathSciNet  Google Scholar 

  145. Roetteler M, Svore KM (2018) Quantum computing: codebreaking and beyond. IEEE Secur Privacy 16(5):22–36

    Article  Google Scholar 

  146. Ali A (2021) In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST) (IEEE), pp. 686–692

  147. Huang J, Wang Y, Wang H, Li Z (2009) In 2009 2nd IEEE International Conference on Computer Science and Information Technology (IEEE), pp. 438–439

  148. Lamas-Linares A, Kurtsiefer C (2007) Breaking a quantum key distribution system through a timing side channel. Opt Express 15(15):9388–9393

    Article  Google Scholar 

  149. Huttner B, Imoto N, Gisin N, Mor T (1995) Quantum cryptography with coherent states. Phys Rev A 51(3):1863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Sharma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest and funding associated with it. The data supporting the findings presented in this article can be downloaded from Scopus database or can be made available by corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Gupta, V. & Sood, S.K. Evolution of Quantum Cryptography in Response to the Computational Power of Quantum Computers: An Archival View. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10122-6

Navigation