Skip to main content
Log in

The Role of Machine Learning in Earthquake Seismology: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This comprehensive survey addresses the notable yet relatively uncharted territory of machine learning (ML) applications within the realm of earthquake engineering. While previous reviews have touched on ML’s involvement, this work strives to fill a gap by providing an extensive analysis of the extent to which ML has permeated earthquake engineering. It delves into how ML is facilitating and propelling research endeavors while aiding decision-makers in mitigating the repercussions of seismic hazards on civil structures. Earthquake engineering, an interdisciplinary field, encompasses the assessment of seismic hazards, characterization of site-specific effects, analysis of structural responses, evaluation of seismic risk and vulnerability, and examination of seismic protection measures. ML algorithms find application in a multitude of scenarios within each of these subfields, contributing to advancements in earthquake engineering research and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data may be made available as per the request.

References

  1. Xie Y, Ebad Sichani M, Padgett JE, DesRoches R (2020) The promise of implementing machine learning in earthquake engineering: a state-of-the-art review. Earthq Spectra 36(4):1769–1801. https://doi.org/10.1177/8755293020919419

    Article  Google Scholar 

  2. Beroza GC, Segou M, Mostafa Mousavi S (2021) Machine learning and earthquake forecasting—next steps. Nat Commun 12(1):4761

    Article  Google Scholar 

  3. Rouet-Leduc B, Hulbert C, Lubbers N, Barros K, Humphreys CJ, Johnson PA (2017) Machine learning predicts laboratory earthquakes. Geophys Res Lett 44(18):9276–9282. https://doi.org/10.1002/2017GL074677

    Article  Google Scholar 

  4. Park Y, Mousavi SM, Zhu W, Ellsworth WL, Beroza GC (2020) Machine-learning-based analysis of the guy-greenbrier, Arkansas earthquakes: a tale of two sequences. Geophys Res Lett 47(6):e2020GL087032. https://doi.org/10.1029/2020GL087032

    Article  Google Scholar 

  5. Harirchian E, Jadhav K, Kumari V, Lahmer T (2022) ML-EHSAPP: a prototype for machine learning-based earthquake hazard safety assessment of structures by using a smartphone app. Eur J Environ Civ Eng 26(11):5279–5299. https://doi.org/10.1080/19648189.2021.1892829

    Article  Google Scholar 

  6. Corbi F, Sandri L, Bedford J, Funiciello F, Brizzi S, Rosenau M, Lallemand S (2019) Machine learning can predict the timing and size of analog earthquakes. Geophys Res Lett 46(3):1303–1311. https://doi.org/10.1029/2018GL081251

    Article  Google Scholar 

  7. Hulbert C, Rouet-Leduc B, Johnson PA, Ren CX, Rivière J, Bolton DC, Marone C (2019) Similarity of fast and slow earthquakes illuminated by machine learning. Nat Geosci 12(1):69–74

    Article  Google Scholar 

  8. Galkina A, Grafeeva N (2019) Machine learning methods for earthquake prediction: a survey. In Proceedings of the fourth conference on software engineering and information management (sEIM-2019), Saint Petersburg, Russia, pp 13, 25. https://www.researchgate.net/profile/Alyona-Galkina/publication/333774922_Machine_Learning_Methods_for_Earthquake_Prediction_a_Survey/links/5d0359154585157d15a95e0a/Machine-Learning-Methods-for-Earthquake-Prediction-a-Survey.pdf

  9. Mousavi SM, Beroza GC (2020) A machine-learning approach for earthquake magnitude estimation. Geophys Res Lett 47(1):e2019GL085976. https://doi.org/10.1029/2019GL085976

    Article  Google Scholar 

  10. Rundle JB, Donnellan A, Fox G, Crutchfield JP, Granat R (2021) Nowcasting earthquakes: imaging the earthquake cycle in California with machine learning. Earth and Space Science 8(12):e2021EA001757. https://doi.org/10.1029/2021EA001757

    Article  Google Scholar 

  11. Mangalathu S, Sun H, Nweke CC, Yi Z, Burton HV (2020) Classifying earthquake damage to buildings using machine learning. Earthq Spectra 36(1):183–208. https://doi.org/10.1177/8755293019878137

    Article  Google Scholar 

  12. Asim KM, Martínez-Álvarez F, Basit A, Iqbal T (2017) Earthquake magnitude prediction in Hindukush region using machine learning techniques. Nat Hazards 85(1):471–486. https://doi.org/10.1007/s11069-016-2579-3

    Article  Google Scholar 

  13. Xiong P, Tong L, Zhang K, Shen X, Battiston R, Ouzounov D, Iuppa R, Crookes D, Long C, Zhou H (2021) Towards advancing the earthquake forecasting by machine learning of satellite data. Sci Total Environ 771:145256

    Article  Google Scholar 

  14. Zhang Y, Burton HV, Sun H, Shokrabadi M (2018) A machine learning framework for assessing post-earthquake structural safety. Struct Saf 72:1–16

    Article  Google Scholar 

  15. Johnson PA, Rouet-Leduc B, Pyrak-Nolte LJ, Beroza GC, Marone CJ, Hulbert C, Howard A, Singer P, Gordeev D, Karaflos D, Levinson CJ, Pfeiffer P, Puk KM, Reade W (2021) Laboratory earthquake forecasting: a machine learning competition. Proc Natl Acad Sci U S A 118(5):e2011362118. https://doi.org/10.1073/pnas.2011362118

    Article  Google Scholar 

  16. Li Z, Meier M, Hauksson E, Zhan Z, Andrews J (2018) Machine learning seismic wave discrimination: application to earthquake early warning. Geophys Res Lett 45(10):4773–4779. https://doi.org/10.1029/2018GL077870

    Article  Google Scholar 

  17. Jena R, Pradhan B, Beydoun G, Alamri AM, Sofyan H (2020) Earthquake hazard and risk assessment using machine learning approaches at Palu. Indonesia Sci Total Environ 749:141582

    Article  Google Scholar 

  18. Jena R, Pradhan B, Beydoun G, Al-Amri A, Sofyan H (2020) Seismic hazard and risk assessment: a review of state-of-the-art traditional and GIS models. Arab J Geosci 13(2):50. https://doi.org/10.1007/s12517-019-5012-x

    Article  Google Scholar 

  19. Debnath P, Chittora P, Chakrabarti T, Chakrabarti P, Leonowicz Z, Jasinski M, Gono R, Jasińska E (2021) Analysis of earthquake forecasting in India using supervised machine learning classifiers. Sustainability 13(2):971

    Article  Google Scholar 

  20. Bregman Y, Radzyner Y, Ben Horin Y, Kahlon M, Rabin N (2023) Machine learning based earthquakes-explosion discrimination for sea of Galilee seismic events of July 2018. Pure Appl Geophys 180(4):1273–1286. https://doi.org/10.1007/s00024-022-03129-2

    Article  Google Scholar 

  21. Asencio-Cortés G, Martínez-Álvarez F, Morales-Esteban A, Reyes J (2016) A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction. Knowl Based Syst 101:15–30

    Article  Google Scholar 

  22. Asadi A, Baise LG, Sanon C, Koch M, Chatterjee S, Moaveni B (2023) Semi-supervised learning method for the augmentation of an incomplete image-based inventory of earthquake-induced soil liquefaction surface effects. Remote Sensing 15(19):4883

    Article  Google Scholar 

  23. Lee J, Xu JZ, Sohn K, Lu W, Berthelot D, Gur I, Khaitan P, Ke-Wei, Huang, Koupparis K, Kowatsch B (2020) Assessing post-disaster damage from satellite imagery using semi-supervised learning techniques. http://arxiv.org/abs/2011.14004

  24. Chegeni MH, Sharbatdar MK, Mahjoub R, Raftari M (2022) New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique. Earthq Eng Eng Vib 21(1):169–191. https://doi.org/10.1007/s11803-022-2079-2

    Article  Google Scholar 

  25. McBrearty IW, Beroza GC (2022) Earthquake location and magnitude estimation with graph neural networks. In: 2022 IEEE international conference on image processing (ICIP), pp 3858–3862. https://ieeexplore.ieee.org/abstract/document/9897468/

  26. Huang JP, Wang XA, Zhao Y, Xin C, Xiang H (2018) Large earthquake magnitude prediction in Taiwan based on deep learning neural network. Neural Netw World 2:149–160

    Article  Google Scholar 

  27. Rundle JB, Yazbeck J, Donnellan A, Fox G, Ludwig LG, Heflin M, Crutchfield J (2022) Optimizing earthquake nowcasting with machine learning: the role of strain hardening in the earthquake cycle. Earth and Space Science 9(11):e2022EA002343. https://doi.org/10.1029/2022EA002343

    Article  Google Scholar 

  28. Seydoux L, Balestriero R, Poli P, de Hoop M, Campillo M, Baraniuk R (2020) Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nat Commun 11(1):3972

    Article  Google Scholar 

  29. Ross ZE, Trugman DT, Azizzadenesheli K, Anandkumar A (2020) Directivity modes of earthquake populations with unsupervised learning. J Geophys Res Solid Earth 125(2):e2019JB018299. https://doi.org/10.1029/2019JB018299

    Article  Google Scholar 

  30. Giglioni V, Venanzi I, Ubertini F (2023) Application of unsupervised learning for post-earthquake assessment of the Z24 benchmark bridge. Procedia Struct Integrity 44:1948–1955

    Article  Google Scholar 

  31. Shi P, Seydoux L, Poli P (2021) Unsupervised learning of seismic wavefield features: clustering continuous array seismic data during the 2009 L’Aquila earthquake. J Geophys Res Solid Earth 126(1):e2020JB020506. https://doi.org/10.1029/2020JB020506

    Article  Google Scholar 

  32. Johnson CW, Ben-Zion Y, Meng H, Vernon F (2020) Identifying different classes of seismic noise signals using unsupervised learning. Geophys Res Lett 47(15):e2020GL088353

    Article  Google Scholar 

  33. Saad OM, Chen Y, Savvaidis A, Chen W, Zhang F, Chen Y (2022) Unsupervised deep learning for single-channel earthquake data denoising and its applications in event detection and fully automatic location. IEEE Trans Geosci Remote Sens 60:1–10

    Google Scholar 

  34. Hernández PD, Ramírez JA, Soto MA (2022) Deep-learning-based earthquake detection for fiber-optic distributed acoustic sensing. J Lightwave Technol 40(8):2639–2650

    Article  Google Scholar 

  35. Mousavi SM, Beroza GC (2022) Deep-learning seismology. Science 377(6607):eabm4470. https://doi.org/10.1126/science.abm4470

    Article  Google Scholar 

  36. Rouet-Leduc B, Hulbert C, McBrearty IW, Johnson PA (2020) Probing slow earthquakes with deep learning. Geophys Res Lett 47(4):e2019GL085870. https://doi.org/10.1029/2019GL085870

    Article  Google Scholar 

  37. Mousavi SM, Ellsworth WL, Zhu W, Chuang LY, Beroza GC (2020) Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun 11(1):3952

    Article  Google Scholar 

  38. Khalatbarisoltani A, Soleymani M, Khodadadi M (2019) Online control of an active seismic system via reinforcement learning. Struct Control Health Monit 26(3):e2298. https://doi.org/10.1002/stc.2298

    Article  Google Scholar 

  39. Papachristos E, Stefanou I (2021) Controlling earthquake-like instabilities using artificial intelligence. http://arxiv.org/abs/2104.13180

  40. Rahmani HR, Chase G, Wiering M, Könke C (2019) A framework for brain learning-based control of smart structures. Adv Eng Inform 42:100986

    Article  Google Scholar 

  41. Ghannad P, Lee Y-C, Choi JO (2021) Prioritizing postdisaster recovery of transportation infrastructure systems using multiagent reinforcement learning. J Manag Eng 37(1):04020100. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000868

    Article  Google Scholar 

  42. Yao K, Zhang L, Luo T, Wu Y (2018) Deep reinforcement learning for extractive document summarization. Neurocomputing 284:52–62

    Article  Google Scholar 

  43. Adriano B, Xia J, Baier G, Yokoya N, Koshimura S (2019) Multi-source data fusion based on ensemble learning for rapid building damage mapping during the 2018 sulawesi earthquake and tsunami in Palu. Indonesia Remote Sens 11(7):886

    Article  Google Scholar 

  44. Kriegerowski M, Petersen GM, Vasyura-Bathke H, Ohrnberger M (2019) A deep convolutional neural network for localization of clustered earthquakes based on multistation full waveforms. Seismol Res Lett 90(2A):510–516

    Article  Google Scholar 

  45. Licciardi A, Bletery Q, Rouet-Leduc B, Ampuero J-P, Juhel K (2022) Instantaneous tracking of earthquake growth with elastogravity signals. Nature 606(7913):319–324

    Article  Google Scholar 

  46. Krischer L, Smith J, Lei W, Lefebvre M, Ruan Y, de Andrade ES, Podhorszki N, Bozdağ E, Tromp J (2016) An adaptable seismic data format. Geophys Suppl Mon Not R Astron Soc 207(2):1003–1011

    Article  Google Scholar 

  47. Li S, Liu B, Ren Y, Chen Y, Yang S, Wang Y, Jiang P (2020) Deep-learning inversion of seismic data. IEEE Trans Geosci Remote Sens 58(3):2135–2149. https://doi.org/10.1109/TGRS.2019.2953473

    Article  Google Scholar 

  48. Chen Y, Huang W, Zhang D, Chen W (2016) An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction. Comput Geosci 95:59–66

    Article  Google Scholar 

  49. Szwillus W, Afonso JC, Ebbing J, Mooney WD (2019) Global crustal thickness and velocity structure from geostatistical analysis of seismic data. J Geophys Res Solid Earth 124(2):1626–1652. https://doi.org/10.1029/2018JB016593

    Article  Google Scholar 

  50. de Jonge T, Vinje V, Poole G, Hou S, Iversen E (2022) Debubbling seismic data using a generalized neural network. Geophysics 87(1):V1–V14

    Article  Google Scholar 

  51. Heimann S, Kriegerowski M, Isken M, Cesca S, Daout S, Grigoli F, Juretzek C, Megies T, Nooshiri N, Steinberg A (2017) Pyrocko—an open-source seismology toolbox and library. https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_2280895_2

  52. Nazari Siahsar MA, Gholtashi S, Kahoo AR, Marvi H, Ahmadifard A (2016) Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition. Geophysics 81(2):V117–V124. https://doi.org/10.1190/geo2015-0341.1

    Article  Google Scholar 

  53. Lecocq T, Hicks SP, Van Noten K, Van Wijk K, Koelemeijer P, De Plaen RSM, Massin F, Hillers G, Anthony RE, Apoloner M-T, Arroyo-Solórzano M, Assink JD, Büyükakpınar P, Cannata A, Cannavo F, Carrasco S, Caudron C, Chaves EJ, Cornwell DG et al (2020) Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science 369(6509):1338–1343. https://doi.org/10.1126/science.abd2438

    Article  Google Scholar 

  54. Liu W, Cao S, Wang Z (2017) Application of variational mode decomposition to seismic random noise reduction. J Geophys Eng 14(4):888

    Google Scholar 

  55. Tian R, Zhang J, Zhang S, Wang L, Yang H, Chen Y, Jiang Y, Lin J, Zhang L (2020) A high-precision energy-efficient GPS time-sync method for high-density seismic surveys. Appl Sci 10(11):3768

    Article  Google Scholar 

  56. Lyubushin A (2018) Synchronization of geophysical field fluctuations. In: Complexity of seismic time series. Elsevier, Amsterdam, pp 161–197

  57. Caihua L, Yuntian T, Jianchao Z, Xingxing H, Xizhen W, Xiaojun L, Yushi W (2022) Design on high-precision time-synchronization system for distributed seismic data acquisition. Acta Seismol Sin 44(6):1111–1120

    Google Scholar 

  58. Jornet-Monteverde JA, Galiana-Merino JJ, Soler-Llorens JL (2021) Design and implementation of a wireless sensor network for seismic monitoring of buildings. Sensors 21(11):3875

    Article  Google Scholar 

  59. Hosseini K, Sigloch K (2017) ObspyDMT: A Python toolbox for retrieving and processing large seismological data sets. Solid Earth 8(5):1047–1070

    Article  Google Scholar 

  60. Wu X, Liang L, Shi Y, Fomel S (2019) FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. GEOPHYSICS 84(3):IM35–IM45. https://doi.org/10.1190/geo2018-0646.1

    Article  Google Scholar 

  61. Iacopini D, Butler RWH, Purves S, McArdle N, De Freslon N (2016) Exploring the seismic expression of fault zones in 3D seismic volumes. J Struct Geol 89:54–73

    Article  Google Scholar 

  62. Kumar R, Da Silva C, Akalin O, Aravkin AY, Mansour H, Recht B, Herrmann FJ (2015) Efficient matrix completion for seismic data reconstruction. Geophysics 80(5):V97–V114. https://doi.org/10.1190/geo2014-0369.1

    Article  Google Scholar 

  63. Araya-Polo M, Dahlke T, Frogner C, Zhang C, Poggio T, Hohl D (2017) Automated fault detection without seismic processing. Lead Edge 36(3):208–214. https://doi.org/10.1190/tle36030208.1

    Article  Google Scholar 

  64. Hillman JI, Cook AE, Sawyer DE, Küçük HM, Goldberg DS (2017) The character and amplitude of ‘discontinuous’ bottom-simulating reflections in marine seismic data. Earth Planet Sci Lett 459:157–169

    Article  Google Scholar 

  65. Chaki S, Routray A, Mohanty WK (2018) Well-log and seismic data integration for reservoir characterization: a signal processing and machine-learning perspective. IEEE Signal Process Mag 35(2):72–81

    Article  Google Scholar 

  66. Allen RM, Melgar D (2019) Earthquake early warning: advances, scientific challenges, and societal needs. Annu Rev Earth Planet Sci 47(1):361–388. https://doi.org/10.1146/annurev-earth-053018-060457

    Article  Google Scholar 

  67. Meier M (2017) How “good” are real-time ground motion predictions from Earthquake early warning systems? J Geophys Res Solid Earth 122(7):5561–5577. https://doi.org/10.1002/2017JB014025

    Article  Google Scholar 

  68. Hoshiba M, Aoki S (2015) Numerical shake prediction for earthquake early warning: data assimilation, real-time shake mapping, and simulation of wave propagation. Bull Seismol Soc Am 105(3):1324–1338

    Article  Google Scholar 

  69. Fauvel K, Balouek-Thomert D, Melgar D, Silva P, Simonet A, Antoniu G, Costan A, Masson V, Parashar M, Rodero I (2020) A distributed multi-sensor machine learning approach to earthquake early warning. In: Proceedings of the AAAI conference on artificial intelligence, vol 34(01), pp 403–411

  70. Abdalzaher MS, Soliman MS, El-Hady SM, Benslimane A, Elwekeil M (2021) A deep learning model for earthquake parameters observation in IoT system-based earthquake early warning. IEEE Internet Things J 9(11):8412–8424

    Article  Google Scholar 

  71. Rafiei MH, Adeli H (2017) NEEWS: a novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dyn Earthq Eng 100:417–427

    Article  Google Scholar 

  72. Jindong S, Cong YU, Shanyou LI (2021) Continuous prediction of onsite PGV for earthquake early warning based on least squares support vector machine. Chin J Geophys 64(2):555–568

    Google Scholar 

  73. Münchmeyer J, Bindi D, Leser U, Tilmann F (2021) The transformer earthquake alerting model: a new versatile approach to earthquake early warning. Geophys J Int 225(1):646–656

    Article  Google Scholar 

  74. McBride SK, Bostrom A, Sutton J, de Groot RM, Baltay AS, Terbush B, Bodin P, Dixon M, Holland E, Arba R (2020) Developing post-alert messaging for ShakeAlert, the earthquake early warning system for the West Coast of the United States of America. Int J Disaster Risk Reduct 50:101713

    Article  Google Scholar 

  75. Kohler MD, Smith DE, Andrews J, Chung AI, Hartog R, Henson I, Given DD, de Groot R, Guiwits S (2020) Earthquake early warning ShakeAlert 20: public rollout. Seismol Res Lett 91(3):1763–1775

    Article  Google Scholar 

  76. Chung AI, Meier M-A, Andrews J, Böse M, Crowell BW, McGuire JJ, Smith DE (2020) ShakeAlert earthquake early warning system performance during the 2019 Ridgecrest earthquake sequence. Bull Seismol Soc Am 110(4):1904–1923

    Article  Google Scholar 

  77. Strauss JA, Allen RM (2016) Benefits and costs of earthquake early warning. Seismol Res Lett 87(3):765–772

    Article  Google Scholar 

  78. Colombelli S, Caruso A, Zollo A, Festa G, Kanamori H (2015) A P wave-based, on-site method for earthquake early warning. Geophys Res Lett 42(5):1390–1398. https://doi.org/10.1002/2014GL063002

    Article  Google Scholar 

  79. Wald DJ (2020) Practical limitations of earthquake early warning. Earthq Spectra 36(3):1412–1447. https://doi.org/10.1177/8755293020911388

    Article  Google Scholar 

  80. Nakayachi K, Becker JS, Potter SH, Dixon M (2019) Residents’ reactions to earthquake early warnings in Japan. Risk Anal 39(8):1723–1740. https://doi.org/10.1111/risa.13306

    Article  Google Scholar 

  81. Cremen G, Galasso C (2020) Earthquake early warning: Recent advances and perspectives. Earth Sci Rev 205:103184

    Article  Google Scholar 

  82. Chiang Y-J, Chin T-L, Chen D-Y (2022) Neural network-based strong motion prediction for on-site earthquake early warning. Sensors 22(3):704

    Article  Google Scholar 

  83. Zhu J, Li S, Song J, Wang Y (2021) Magnitude estimation for earthquake early warning using a deep convolutional neural network. Front Earth Sci 9:653226

    Article  Google Scholar 

  84. Kodera Y, Saitou J, Hayashimoto N, Adachi S, Morimoto M, Nishimae Y, Hoshiba M (2016) Earthquake early warning for the 2016 Kumamoto earthquake: performance evaluation of the current system and the next-generation methods of the Japan Meteorological Agency. Earth Planets Space 68(1):202. https://doi.org/10.1186/s40623-016-0567-1

    Article  Google Scholar 

  85. Minson SE, Baltay AS, Cochran ES, Hanks TC, Page MT, McBride SK, Milner KR, Meier M-A (2019) The limits of earthquake early warning accuracy and best alerting strategy. Sci Rep 9(1):2478

    Article  Google Scholar 

  86. Tajima F, Hayashida T (2018) Earthquake early warning: what does “seconds before a strong hit” mean? Prog Earth Planet Sci 5(1):63. https://doi.org/10.1186/s40645-018-0221-6

    Article  Google Scholar 

  87. Riedel I, Guéguen P, Dalla Mura M, Pathier E, Leduc T, Chanussot J (2015) Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods. Nat Hazards 76(2):1111–1141. https://doi.org/10.1007/s11069-014-1538-0

    Article  Google Scholar 

  88. Kiani J, Camp C, Pezeshk S (2019) On the application of machine learning techniques to derive seismic fragility curves. Comput Struct 218:108–122

    Article  Google Scholar 

  89. Alimoradi A, Beck JL (2015) Machine-learning methods for earthquake ground motion analysis and simulation. J Eng Mech 141(4):04014147. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000869

    Article  Google Scholar 

  90. Harirchian E, Lahmer T (2020) Developing a hierarchical type-2 fuzzy logic model to improve rapid evaluation of earthquake hazard safety of existing buildings. Structures 28:1384–1399

    Article  Google Scholar 

  91. Jiao P, Alavi AH (2020) Artificial intelligence in seismology: Advent, performance and future trends. Geosci Front 11(3):739–744

    Article  Google Scholar 

  92. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS, Field N, Chen R, Rukstales KS, Luco N, Wheeler RL, Williams RA, Olsen AH (2015) The 2014 United States National Seismic Hazard Model. Earthq Spectra 31(1_suppl):1–30. https://doi.org/10.1193/120814EQS210M

    Article  Google Scholar 

  93. Jena R, Pradhan B, Naik SP, Alamri AM (2021) Earthquake risk assessment in NE India using deep learning and geospatial analysis. Geosci Front 12(3):101110

    Article  Google Scholar 

  94. Schleicher LS, Schmerr NC, Watters TR, Banks ME, Bensi M (2020) Constructing a preliminary probabilistic seismic hazard analysis for the Moon. In: Lunar planetary science conference, 2020 Abstract, 3064. https://www.hou.usra.edu/meetings/lpsc2020/eposter/3064.pdf

  95. Jena R, Shanableh A, Al-Ruzouq R, Pradhan B, Gibril MBA, Ghorbanzadeh O, Atzberger C, Khalil MA, Mittal H, Ghamisi P (2023) An Integration of deep learning and transfer learning for earthquake-risk assessment in the Eurasian region. Remote Sens 15(15):3759

    Article  Google Scholar 

  96. Vaziri J, Soleymani A, Hasani H, Mosavi Nezhad SM, Momivand K (2022) A comprehensive review on deterministic seismic hazard analysis (DSHA) and probabilistic seismic hazard analysis (PSHA) methods. https://www.researchgate.net/profile/Hamed-Hasani-3/publication/359095404_A_Comprehensive_Review_on_Deterministic_Seismic_Hazard_Analysis_DSHA_and_Probabilistic_Seismic_Hazard_Analysis_PSHA_Methods/links/6227bbf184ce8e5b4d10ae77/A-Comprehensive-Review-on-Deterministic-Seismic-Hazard-Analysis-DSHA-and-Probabilistic-Seismic-Hazard-Analysis-PSHA-Methods.pdf

  97. Feng J, Wang E, Ding H, Huang Q, Chen X (2020) Deterministic seismic hazard assessment of coal fractures in underground coal mine: a case study. Soil Dyn Earthq Eng 129:105921

    Article  Google Scholar 

  98. Jena R (2021) Development of semi-quantitative earthquake risk assessment models using machine learning, multi-criteria decision-making, and GIS. PhD Thesis. https://opus.lib.uts.edu.au/handle/10453/150778

  99. Xu Y, Wang JP, Wu Y-M, Kuo-Chen H (2019) Prediction models and seismic hazard assessment: a case study from Taiwan. Soil Dyn Earthq Eng 122:94–106

    Article  Google Scholar 

  100. Zhou Y, Rao B, Wang W (2020) UAV swarm intelligence: Recent advances and future trends. IEEE Access 8:183856–183878

    Article  Google Scholar 

  101. Dhanya J, Raghukanth STG (2020) Neural network-based hybrid ground motion prediction equations for Western Himalayas and North-Eastern India. Acta Geophys 68:303–324

    Article  Google Scholar 

  102. Ramkrishnan R, Sreevalsa K, Sitharam TG (2022) Strong motion data based regional ground motion prediction equations for North East India based on non-linear regression models. J Earthq Eng 26(6):2927–2947. https://doi.org/10.1080/13632469.2020.1778586

    Article  Google Scholar 

  103. Kohrangi M, Bazzurro P, Vamvatsikos D, Spillatura A (2017) Conditional spectrum-based ground motion record selection using average spectral acceleration. Earthq Eng Struct Dynam 46(10):1667–1685. https://doi.org/10.1002/eqe.2876

    Article  Google Scholar 

  104. Roselli P, Marzocchi W, Faenza L (2016) Toward a new probabilistic framework to score and merge ground-motion prediction equations: the case of the Italian region. Bull Seismol Soc Am 106(2):720–733

    Article  Google Scholar 

  105. Chodacki J (2016) New ground motion prediction equation for peak ground velocity and duration of ground motion for mining tremors in upper Silesia. Acta Geophys 64(6):2449–2470. https://doi.org/10.1515/acgeo-2016-0109

    Article  Google Scholar 

  106. Minato F, Hata Y, Yamada M, Tokida K, Kuwata Y, Uotani M (2015) High density predictions of ground motion during Nankai trough earthquake. ISOPE international ocean and polar engineering conference, ISOPE-I. https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE15/All-ISOPE15/14893

  107. Butepage J, Black MJ, Kragic D, Kjellstrom H (2017) Deep representation learning for human motion prediction and classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6158–6166. http://openaccess.thecvf.com/content_cvpr_2017/html/Butepage_Deep_Representation_Learning_CVPR_2017_paper.html

  108. Kong Q, Trugman DT, Ross ZE, Bianco MJ, Meade BJ, Gerstoft P (2019) Machine learning in seismology: turning data into insights. Seismol Res Lett 90(1):3–14

    Article  Google Scholar 

  109. Martinez J, Black MJ, Romero J (2017) On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2891–2900. http://openaccess.thecvf.com/content_cvpr_2017/html/Martinez_On_Human_Motion_CVPR_2017_paper.html

  110. Abrahamson N, Gregor N, Addo K (2016) BC hydro ground motion prediction equations for subduction earthquakes. Earthq Spectra 32(1):23–44. https://doi.org/10.1193/051712EQS188MR

    Article  Google Scholar 

  111. Bergen KJ, Johnson PA, De Hoop MV, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363:eaau0323. https://doi.org/10.1126/science.aau0323

    Article  Google Scholar 

  112. Maqueda AI, Loquercio A, Gallego G, García N, Scaramuzza D (2018) Event-based vision meets deep learning on steering prediction for self-driving cars. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5419–5427. http://openaccess.thecvf.com/content_cvpr_2018/html/Maqueda_Event-Based_Vision_Meets_CVPR_2018_paper.html

  113. Triki-Lahiani A, Abdelghani AB-B, Slama-Belkhodja I (2018) Fault detection and monitoring systems for photovoltaic installations: a review. Renew Sustain Energy Rev 82:2680–2692

    Article  Google Scholar 

  114. Gangsar P, Tiwari R (2020) Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: a state-of-the-art review. Mech Syst Signal Process 144:106908

    Article  Google Scholar 

  115. Liu WY, Tang BP, Han JG, Lu XN, Hu NN, He ZZ (2015) The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review. Renew Sustain Energy Rev 44:466–472

    Article  Google Scholar 

  116. Rivas AEL, Abrao T (2020) Faults in smart grid systems: monitoring, detection and classification. Electr Power Syst Res 189:106602

    Article  Google Scholar 

  117. Yang C, Liu J, Zeng Y, Xie G (2019) Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model. Renew Energy 133:433–441

    Article  Google Scholar 

  118. Zhao H, Liu H, Hu W, Yan X (2018) Anomaly detection and fault analysis of wind turbine components based on deep learning network. Renew Energy 127:825–834

    Article  Google Scholar 

  119. Islam R, Islam MN, Islam MN (2016) Earthquake risks in Bangladesh: Causes, vulnerability, preparedness and strategies for mitigation. Arpn J Earth Sci 5(2):75–90

    Google Scholar 

  120. Tongkul F (2021) An overview of earthquake science in Malaysia. ASM Sci J 14:1–12

    Article  Google Scholar 

  121. Rahimi B, Sharifzadeh M, Feng X-T (2020) Ground behaviour analysis, support system design and construction strategies in deep hard rock mining—justified in Western Australian’s mines. J Rock Mech Geotech Eng 12(1):1–20

    Article  Google Scholar 

  122. ur Rahman M, Rahman S, Mansoor S, Deep V, Aashkaar M (2016) Implementation of ICT and wireless sensor networks for earthquake alert and disaster management in earthquake prone areas. Procedia Comput Sci 85:92–99

    Article  Google Scholar 

  123. Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, Liston DE, Low DK-W, Newman S-F, Kim J (2018) Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2(10):749–760

    Article  Google Scholar 

  124. Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antonopoulos AS, Thomas KE, Thomas S, Akoumianakis I, Fan LM (2019) A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J 40(43):3529–3543

    Article  Google Scholar 

  125. Goldstein BA, Navar AM, Carter RE (2017) Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J 38(23):1805–1814

    Google Scholar 

  126. Chung JY, Lee S (2019) Dropout early warning systems for high school students using machine learning. Child Youth Serv Rev 96:346–353

    Article  Google Scholar 

  127. Walsh CG, Ribeiro JD, Franklin JC (2017) Predicting risk of suicide attempts over time through machine learning. Clin Psychol Sci 5(3):457–469. https://doi.org/10.1177/2167702617691560

    Article  Google Scholar 

  128. Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD (2016) Machine learning and decision support in critical care. Proc IEEE 104(2):444–466

    Article  Google Scholar 

  129. Lakkaraju H, Aguiar E, Shan C, Miller D, Bhanpuri N, Ghani R, Addison KL (2015) A machine learning framework to identify students at risk of adverse academic outcomes. In: Proceedings of the 21th ACM sigkdd international conference on knowledge discovery and data mining, pp 1909–1918. https://doi.org/10.1145/2783258.2788620

  130. Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, Rosen M, Ruef A, Dwyer DB, Paolini M, Chisholm K, Kambeitz J, Haidl T (2018) Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis. JAMA Psychiatry 75(11):1156–1172

    Article  Google Scholar 

  131. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4):e0174944

    Article  Google Scholar 

  132. Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z (2018) Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics 16(1):17–32

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Anup Chitkeshwar contributed completely for the manuscript.

Corresponding author

Correspondence to Anup Chitkeshwar.

Ethics declarations

Competing interests

The authors declared that they have no conflict of interest.

Informed Consent

Not applicable.

Research Involving Human and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitkeshwar, A. The Role of Machine Learning in Earthquake Seismology: A Review. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10099-2

Navigation