Skip to main content
Log in

Machine Learning in Healthcare Analytics: A State-of-the-Art Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The use of machine learning (ML) models have become a crucial factor in the growing field of healthcare, ushering in a new era of medical research and diagnosis. This study rigorously reviews research publications published in reputable journals during the last five years. The pace and dynamic nature of machine learning in the healthcare domains demonstrated by the arduous criteria, which are used to sort through these articles. Disease-centric analysis uncovered a wide range of deep learning and machine learning models which are designed to address particular medical problems. Convolutional neural networks (CNNs), one of the most complex deep learning architectures, coexist with more conventional statistical models like logistic regression and support vector machines. CNNs are particularly prominent when it comes to disorders that need picture processing, which highlights the significant influence of deep learning in deciphering complex medical patterns. The popularity of ensemble methods, such as Random Forest, Gradient Boosting, and AdaBoost, indicates that their ability to combine predictive capability and strengthen model resilience is well acknowledged. Hybrid techniques, which integrate the advantages of many models, provide novel approaches to tackle distinct healthcare problems. This research also sheds light on a nuanced approach for model selection, wherein deep learning models performs well with huge datasets and image analysis, while statistical and ensemble models provides better results with numerical and categorical data. The adaptability needed in healthcare analytics is shown by hybrid models, which frequently combine standard models for classification with deep learning for feature extraction. The present review can endow problems related to ML in healthcare domain, possible solutions, potential directions and some knowledge to the researchers working in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

AB:

AdaBoost

ABC:

Artificial bee colony

AC:

Agglomerative clustering

BIRCH:

Balanced iterative reducing and clustering using hierarchies

BN:

Bayes net

BP-NN:

Back propagation neural network

CFS:

Correlation-based feature subset

DBSCAN:

Density-based clustering

Deep AE:

Deep autoencoders

DL:

Deep learning

EM:

Expectation maximization

FCM:

Fuzzy C-means clustering

FPSOCNN:

Fuzzy particle swarm optimization convolution neural network

GB:

GradientBoost

GBDT:

Gradient boosted decision trees

GMM:

Gaussian mixture model

HC:

Hierarchical clustering

IPCT:

Improved profuse clustering technique

KM:

K-means

LDA:

Linear discriminant analysis

LM:

Linear method

ML:

Machine learning

mRmR:

Maximum relevance minimum redundancy

NB:

Naive bayes

PART:

Projective adaptive resonance theory

PNN:

Probabilistic neural network

PSO:

Particle swarm optimization

QDA:

Quadratic discriminant analysis

RBE:

Restricted Boltzmann machine

RFNN:

Structured receptive field neural network

SC:

Spectral clustering

SCC:

Simultaneous clustering and classification

SDL:

Synergic deep learning

SGB:

Stochastic gradient boosting

SMP:

Sum of the maximal probabilities

VC:

Voting classifier

References

  1. Alanazi A (2022) Using machine learning for healthcare challenges and opportunities. Inf Med Unlocked 30:100924. https://doi.org/10.1016/j.imu.2022.100924

    Article  Google Scholar 

  2. World Health Organization (2020) https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 28 Jan, 2024

  3. Gaziano T, Reddy KS, Paccaud F, Horton S (2006) Cardiovascular disease. Dis Control Priorities Dev Ctries. https://doi.org/10.1596/978-0-8213-6179-5/chpt-33

    Article  Google Scholar 

  4. Roth GA et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052

    Article  Google Scholar 

  5. Akkaş MA, SOKULLU R, Ertürk Çetin H (2020) Healthcare and patient monitoring using IoT. Int Things 11:100173. https://doi.org/10.1016/j.iot.2020.100173

    Article  Google Scholar 

  6. Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2018) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 19(6):1236–1246. https://doi.org/10.1093/bib/bbx044

    Article  Google Scholar 

  7. Siddique S, Chow JCL (2021) Machine learning in healthcare communication. Encyclopedia 1(1):220–239. https://doi.org/10.3390/encyclopedia1010021

    Article  Google Scholar 

  8. Esteva A et al (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29. https://doi.org/10.1038/s41591-018-0316-z

    Article  Google Scholar 

  9. Qayyum A, Qadir J, Bilal M, Al-Fuqaha A (2021) Secure and robust machine learning for healthcare: a survey. IEEE Rev Biomed Eng 14:156–180. https://doi.org/10.1109/RBME.2020.3013489

    Article  Google Scholar 

  10. Shamshirband S, Fathi M, Dehzangi A, Chronopoulos AT, Alinejad-Rokny H (2021) A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. J Biomed Inf 113:103627. https://doi.org/10.1016/j.jbi.2020.103627

    Article  Google Scholar 

  11. Lopez D, Manogaran G (2017) A survey of big data architectures and machine learning algorithms in healthcare. Int J Biomed Eng Technol 25:182. https://doi.org/10.1504/IJBET.2017.10008616. no. 2/3/4

    Article  Google Scholar 

  12. Rehman TU, Mahmud MS, Chang YK, Jin J, Shin J (2019) Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput Electron Agric 156:585–605. https://doi.org/10.1016/j.compag.2018.12.006

    Article  Google Scholar 

  13. Panda NR (2022) A review on logistic regression in medical research. Natl J Community Med 13(4):265–270. https://doi.org/10.55489/njcm.134202222

    Article  Google Scholar 

  14. Jackins V, Vimal S, Kaliappan M, Lee MY (2021) AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. J Supercomput 77(5):5198–5219. https://doi.org/10.1007/s11227-020-03481-x

    Article  Google Scholar 

  15. Haq AU et al (2019) Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings. IEEE Access 7:37718–37734. https://doi.org/10.1109/ACCESS.2019.2906350

    Article  Google Scholar 

  16. Shouman M, Turner T, Stocker R (2012) Applying k-nearest neighbour in diagnosing heart disease patients. Int J Inf Educ Technol. https://doi.org/10.7763/ijiet.2012.v2.114

    Article  Google Scholar 

  17. Xing W, Bei Y (2020) Medical health big data classification based on KNN classification algorithm. IEEE Access 8:28808–28819. https://doi.org/10.1109/ACCESS.2019.2955754

    Article  Google Scholar 

  18. Ak MF (2020) A comparative analysis of breast cancer detection and diagnosis using data visualization and machine learning applications. Healthcare. https://doi.org/10.3390/healthcare8020111

    Article  Google Scholar 

  19. Biswas N, Uddin KMM, Rikta ST, Dey SK (2022) A comparative analysis of machine learning classifiers for stroke prediction: a predictive analytics approach. Healthc Anal 2:100116. no. July10.1016/j.health.2022.100116

    Article  Google Scholar 

  20. Ghosh P, Azam S, Karim A, Hassan M, Roy K, Jonkman M (2021) A comparative study of different machine learning tools in detecting diabetes. Procedia Comput Sci 192:467–477. https://doi.org/10.1016/j.procs.2021.08.048

    Article  Google Scholar 

  21. Yahyaoui A, Jamil A, Rasheed J, Yesiltepe M (2019) A decision support system for diabetes prediction using machine learning and deep learning techniques. 1st Int Inf Softw Eng Conf Innov Technol Digit Transform IISEC 2019—Proc 2:1–4. https://doi.org/10.1109/UBMYK48245.2019.8965556

    Article  Google Scholar 

  22. Rani P, Kumar R, Ahmed NMOS, Jain A (2021) A decision support system for heart disease prediction based upon machine learning. J Reliab Intell Environ 7(3):263–275. https://doi.org/10.1007/s40860-021-00133-6

    Article  Google Scholar 

  23. Chang W, Liu Y, Xiao Y, Yuan X, Xu X, Zhang S (2019) Phương Pháp Xư Lý Dư Liệu Luận Án.Pdf

  24. Chang V, Bailey J, Xu QA, Sun Z (2023) Pima indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural Comput Appl 35(22):16157–16173. https://doi.org/10.1007/s00521-022-07049-z

    Article  Google Scholar 

  25. Choudhury A, Gupta D (2019) A survey on medical diagnosis of diabetes using machine learning techniques. Springer, Singapore

    Book  Google Scholar 

  26. Chicco D, Jurman G (2021) An ensemble learning approach for enhanced classification of patients with hepatitis and cirrhosis. IEEE Access 9:24485–24498. https://doi.org/10.1109/ACCESS.2021.3057196

    Article  Google Scholar 

  27. Mohammed SA, Darrab S, Noaman SA, Saake G (2020) Analysis of breast cancer detection using different machine learning techniques. Springer, Singapore

    Book  Google Scholar 

  28. Mollalo A, Rivera KM, Vahedi B (2020) Artificial-neural-network-modeling-of-novel-coronavirus-COVID19-incidence-rates-across-the-continental-United-States. Int J Environ Res Public Health 17(12):4204. https://doi.org/10.3390/ijerph17124204

    Article  Google Scholar 

  29. Alaa Khaleel F, Al-Bakry AM (2023) Diagnosis of diabetes using machine learning algorithms. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.07.196

    Article  Google Scholar 

  30. Matin Malakouti S (2023) Heart disease classification based on ECG using machine learning models. Biomed Signal Process Control 84:104796. https://doi.org/10.1016/j.bspc.2023.104796

    Article  Google Scholar 

  31. Wu J, Hicks C (2021) Breast cancer type classification using machine learning. J Pers Med 11(2):1–12. https://doi.org/10.3390/jpm11020061

    Article  Google Scholar 

  32. Jamthikar A et al (2020) Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 10(4):919–938. https://doi.org/10.21037/cdt.2020.01.07

    Article  Google Scholar 

  33. Samee NMA (2020) Classical and deep learning paradigms for detection and validation of key genes of risky outcomes of HCV. Algorithms. https://doi.org/10.3390/a13030073

    Article  Google Scholar 

  34. Govindarajan P, Soundarapandian RK, Gandomi AH, Patan R, Jayaraman P, Manikandan R (2020) Classification of stroke disease using machine learning algorithms. Neural Comput Appl 32(3):817–828. https://doi.org/10.1007/s00521-019-04041-y

    Article  Google Scholar 

  35. Trishna TI, Emon SU, Ema RR, Sajal GIH, Kundu S, Islam T (2019) Detection of hepatitis (A, B, C and E) viruses based on random forest, k-nearest and naïve bayes classifier. 2019 10th Int Conf Comput Commun Netw Technol ICCCNT 2019. https://doi.org/10.1109/ICCCNT45670.2019.8944455

    Article  Google Scholar 

  36. Emon SU, Trishna TI, Ema RR, Sajal GIH, Kundu S, Islam T (2019) Detection of hepatitis viruses based on J48, KStar and Naïve Bayes classifier. 2019 10th Int Conf Comput Commun Netw Technol ICCCNT 2019. https://doi.org/10.1109/ICCCNT45670.2019.8944619

    Article  Google Scholar 

  37. Abdulhadi N, Al-Mousa A (2021) Diabetes detection using machine learning classification methods. Conf Inf Technol ICIT 2021—Proc. https://doi.org/10.1109/ICIT52682.2021.9491788

    Article  Google Scholar 

  38. Lu H, Tian S, Yu L, Lv X, Chen S (2019) Diagnosis of hepatitis B based on Raman spectroscopy combined with a multiscale convolutional neural network. Vib Spectrosc. https://doi.org/10.1016/j.vibspec.2020.103038

    Article  Google Scholar 

  39. Malebary SJ, Khan YD (2021) Evaluating machine learning methodologies for identification of cancer driver genes. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-91656-8

    Article  Google Scholar 

  40. Rath A, Mishra D, Panda G, Satapathy SC (2021) Heart disease detection using deep learning methods from imbalanced ECG samples. Biomed Signal Process Control 68:102820. https://doi.org/10.1016/j.bspc.2021.102820

    Article  Google Scholar 

  41. Ali MM, Paul BK, Ahmed K, Bui FM, Quinn JMW, Moni MA (2021) Heart disease prediction using supervised machine learning algorithms: performance analysis and comparison. Comput Biol Med 136:104672. https://doi.org/10.1016/j.compbiomed.2021.104672

    Article  Google Scholar 

  42. Li THS, Chiu HJ, Kuo PH (2022) Hepatitis C virus detection model by using random forest logistic-regression and algorithm ABC. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3202295

    Article  Google Scholar 

  43. Liao PC, Chen MS, Jhou MJ, Chen TC, Yang CT, Lu CJ (2022) Integrating health data-driven machine learning algorithms to evaluate risk factors of early stage hypertension at different levels of HDL and LDL cholesterol. Diagnostics. https://doi.org/10.3390/diagnostics12081965

    Article  Google Scholar 

  44. Khanday AMUD, Rabani ST, Khan QR, Rouf N, Din MMU (2020) Machine learning based approaches for detecting COVID-19 using clinical text data. Int J Inf Technol 12(3):731–739. https://doi.org/10.1007/s41870-020-00495-9

    Article  Google Scholar 

  45. Brunese L, Martinelli F, Mercaldo F, Santone A (2020) Machine learning for coronavirus covid-19 detection from chest x-rays. Procedia Comput Sci 176:2212–2221. https://doi.org/10.1016/j.procs.2020.09.258

    Article  Google Scholar 

  46. Daghrir J, Tlig L, Bouchouicha M, Sayadi M (2020) Melanoma skin cancer detection using deep learning and classical machine learning techniques: a hybrid approach. 2020 Int Conf Adv Technol Signal Image Process ATSIP 2020:1–5. https://doi.org/10.1109/ATSIP49331.2020.9231544

    Article  Google Scholar 

  47. Abd El-Salam SM et al (2019) Performance of machine learning approaches on prediction of esophageal varices for Egyptian chronic hepatitis C patients. Inf Med Unlocked 17:100267. https://doi.org/10.1016/j.imu.2019.100267. November

    Article  Google Scholar 

  48. Emon MU, Keya MS, Meghla TI, Rahman MM, Al Mamun MS, Kaiser MS (2020) Performance analysis of machine learning approaches in stroke prediction. Proc 4th Int Conf Electron Commun Aerosp Technol ICECA 2020. https://doi.org/10.1109/ICECA49313.2020.9297525

    Article  Google Scholar 

  49. Vijayalakshmi C, Mohideen SP (2022) Predicting Hepatitis B to be acute or chronic in an infected person using machine learning algorithm. Adv Eng Softw 172:103179. https://doi.org/10.1016/j.advengsoft.2022.103179

    Article  Google Scholar 

  50. Ahammed K, Satu MS, Khan MI, Whaiduzzaman M (2020) Predicting infectious state of hepatitis C virus affected patient’s applying machine learning methods. 2020 IEEE Reg 10 Symp TENSYMP. https://doi.org/10.1109/TENSYMP50017.2020.9230464

    Article  Google Scholar 

  51. Jain N et al (2021) Prediction modelling of COVID using machine learning methods from B-cell dataset. Results Phys 21:103813. https://doi.org/10.1016/j.rinp.2021.103813

    Article  Google Scholar 

  52. Akter L, Ferdib-Al-Islam MM, Al-Rakhami MS, Haque MR (2021) Prediction of cervical cancer from behavior risk using machine learning techniques. SN Comput Sci. https://doi.org/10.1007/s42979-021-00551-6

    Article  Google Scholar 

  53. Bharti R, Khamparia A, Shabaz M, Dhiman G, Pande S, Singh P (2021) Prediction of heart disease using a combination of machine learning and deep learning. Comput Intell Neurosci. https://doi.org/10.1155/2021/8387680

    Article  Google Scholar 

  54.  Yarasuri VK, Indukuri GK, Nair AK (2019) Prediction of hepatitis disease using machine learning technique, Proc Third Int Conf I-SMAC, pp. 265–269, 2019.

  55. Chen L, Ji P, Ma Y (2022) Machine learning model for hepatitis C diagnosis customized to each patient. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3210347

    Article  Google Scholar 

  56. Katarya R, Meena SK (2021) Machine learning techniques for Heart Disease Prediction: a comparative study and analysis. Health Technol (Berl) 11(1):87–97. https://doi.org/10.1007/s12553-020-00505-7

    Article  Google Scholar 

  57. Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L (2021) Correction to: preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics (European Radiology, (2021), 31, 7, (4576–4586), 10.1007/s00330-020-07562-6). Eur Radiol 31(8):6407. https://doi.org/10.1007/s00330-021-07704-4

    Article  Google Scholar 

  58. Saputra TAN, Arizona KI, Andrian MR, Kurniadi FI, Juarto B (2022) Random forest in detecting hepatitis C. Proc—2022 9th Int Conf Inf Technol Comput Electr Eng ICITACEE. https://doi.org/10.1109/ICITACEE55701.2022.9924074

    Article  Google Scholar 

  59. Hussain M et al (2020) Rapid detection system for hepatitis B surface antigen (HBsAg) based on immunomagnetic separation, multi-angle dynamic light scattering and support vector machine. IEEE Access 8:107373–107386. https://doi.org/10.1109/ACCESS.2020.3000357

    Article  Google Scholar 

  60. Dritsas E, Trigka M (2022) Stroke risk prediction with machine learning techniques. Sensors. https://doi.org/10.3390/s22134670

    Article  Google Scholar 

  61. Cheon S, Kim J, Lim J (2019) The use of deep learning to predict stroke patient mortality. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16111876

    Article  Google Scholar 

  62. Assaf D et al (2020) Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern Emerg Med 15(8):1435–1443. https://doi.org/10.1007/s11739-020-02475-0

    Article  Google Scholar 

  63. Rincy TN, Gupta R (2020) Ensemble learning techniques and its efficiency in machine learning: a survey. 2nd Int Conf Data, Eng Appl (IDEA). https://doi.org/10.1109/IDEA49133.2020.9170675

    Article  Google Scholar 

  64. Shrivastav LK, Jha SK (2021) A gradient boosting machine learning approach in modeling the impact of temperature and humidity on the transmission rate of COVID-19 in India. Appl Intell 51(5):2727–2739. https://doi.org/10.1007/s10489-020-01997-6

    Article  Google Scholar 

  65. Bahad P, Saxena P (2020) Study of AdaBoost and gradient boosting algorithms for predictive analytics. In: Singh Tomar G, Chaudhari NS, Barbosa JLV, Aghwariya MK (eds) International Conference on Intelligent Computing and Smart Communication 2019. Springer, Singapore. https://doi.org/10.1007/978-981-15-0633-8_22

    Chapter  Google Scholar 

  66. Ryu S-E, Shin D-H, Chung K (2020) Prediction model of dementia risk based on XGBoost using derived variable extraction and hyper parameter optimization. IEEE Access 8:177708–177720. https://doi.org/10.1109/ACCESS.2020.3025553

    Article  Google Scholar 

  67. Liu T, Fan W, Wu C (2019) A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artif Intell Med 101:101723. https://doi.org/10.1016/j.artmed.2019.101723

    Article  Google Scholar 

  68. Scrutinio D et al (2020) Machine learning to predict mortality after rehabilitation among patients with severe stroke. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-77243-3

    Article  Google Scholar 

  69. Zoabi Y, Deri-Rozov S, Shomron N (2021) Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj Digit Med. https://doi.org/10.1038/s41746-020-00372-6

    Article  Google Scholar 

  70. Zhao Y, Tian S, Yu L, Zhang Z, Zhang W (2021) Analysis and classification of hepatitis infections using Raman spectroscopy and multiscale convolutional neural networks. J Appl Spectrosc 88(2):441–451. https://doi.org/10.1007/s10812-021-01192-6

    Article  Google Scholar 

  71. Mohan S, Thirumalai C, Srivastava G (2019) Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 7:81542–81554. https://doi.org/10.1109/ACCESS.2019.2923707

    Article  Google Scholar 

  72. Latha CBC, Jeeva SC (2019) Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inform Med Unlocked. https://doi.org/10.1016/j.imu.2019.100203

    Article  Google Scholar 

  73. Chandrasekhar N, Peddakrishna S (2023) Enhancing heart disease prediction accuracy through machine learning techniques and optimization. Processes. https://doi.org/10.3390/pr11041210

    Article  Google Scholar 

  74. Yadav AL, Soni K, Khare S (2023) Heart diseases prediction using machine learning. 2023 14th Int Conf Comput Commun Netw Technol ICCCNT. https://doi.org/10.1109/ICCCNT56998.2023.10306469

    Article  Google Scholar 

  75. Khandakar A et al (2021) A machine learning model for early detection of diabetic foot using thermogram images. Comput Biol Med 137:104838. https://doi.org/10.1016/j.compbiomed.2021.104838

    Article  Google Scholar 

  76. Joshi AV (2023) Perceptron and neural networks. Machine learning and artificial intelligence. Springer, Cham, pp 57–72. https://doi.org/10.1007/978-3-031-12282-8_6

    Chapter  Google Scholar 

  77. Taud H, Mas J (2018) Multilayer perceptron (MLP). In: Camacho Olmedo M, Paegelow M, Mas JF, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer, Cham. https://doi.org/10.1007/978-3-319-60801-3_27

    Chapter  Google Scholar 

  78. Behera S, Nayak SC, Kumar AVSP (2023) A comprehensive survey on higher order neural networks and evolutionary optimization learning algorithms in financial time series forecasting. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09942-9

    Article  Google Scholar 

  79. Behera AK, Nayak SC, Dash CSK, Dehuri S, Panda M (2019) Improving software reliability prediction accuracy using CRO-based FLANN. In: Saini H, Sayal R, Govardhan A, Buyya R (eds) Innovations in computer science and engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8201-6_24

    Chapter  Google Scholar 

  80. Bacchi S, Zerner T, Oakden-Rayner L, Kleinig T, Patel S, Jannes J (2020) Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: a pilot study. Acad Radiol 27(2):e19–e23. https://doi.org/10.1016/j.acra.2019.03.015

    Article  Google Scholar 

  81. Vincent Paul SM, Balasubramaniam S, Panchatcharam P, Malarvizhi Kumar P, Mubarakali A (2022) Intelligent framework for prediction of heart disease using deep learning. Arab J Sci Eng 47(2):2159–2169. https://doi.org/10.1007/s13369-021-06058-9

    Article  Google Scholar 

  82. Bhatt CM, Patel P, Ghetia T, Mazzeo PL (2023) Effective heart disease prediction using machine learning techniques. Algorithms 16(2):88. https://doi.org/10.3390/a16020088

    Article  Google Scholar 

  83. Gangadhar MS, Sai KVS, Kumar SHS, Kumar KA, Kavitha M, Aravinth SS (2023) Machine learning and deep learning techniques on accurate risk prediction of coronary heart disease. Proc—7th Int Conf Comput Methodol Commun ICCMC. https://doi.org/10.1109/ICCMC56507.2023.10083756

    Article  Google Scholar 

  84. Mathew A, Amudha P, Sivakumari S (2021) Deep learning techniques: an overview. In: Hassanien A, Bhatnagar R, Darwish A (eds) Advanced machine learning technologies and applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-3383-9_54

    Chapter  Google Scholar 

  85. Li Z, Liu F, Yang W, Peng S, Zhou J (2022) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Networks Learn Syst 33(12):6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827

    Article  MathSciNet  Google Scholar 

  86. Tammina S (2019) Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int J Sci Res Publ. https://doi.org/10.29322/IJSRP.9.10.2019.p9420

    Article  Google Scholar 

  87. Wu Z, Shen C, van den Hengel A (2019) Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recognit 90:119–133. https://doi.org/10.1016/j.patcog.2019.01.006

    Article  Google Scholar 

  88. Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270. https://doi.org/10.1162/neco_a_01199

    Article  MathSciNet  Google Scholar 

  89. Paul A, Choi K (2023) Deep learning-based selective spectrum sensing and allocation in cognitive vehicular radio networks. Veh Commun 41:100606. https://doi.org/10.1016/j.vehcom.2023.100606

    Article  Google Scholar 

  90. Rahman M, Islam D, Mukti RJ, Saha I (2020) A deep learning approach based on convolutional LSTM for detecting diabetes. Comput Biol Chem 88:107329. https://doi.org/10.1016/j.compbiolchem.2020.107329

    Article  Google Scholar 

  91. Polsinelli M, Cinque L, Placidi G (2020) A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recognit Lett 140:95–100. https://doi.org/10.1016/j.patrec.2020.10.001

    Article  Google Scholar 

  92. Masud M, Sikder N, Al Nahid A, Bairagi AK, Alzain MA (2021) A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors (Switzerland) 21(3):1–21. https://doi.org/10.3390/s21030748

    Article  Google Scholar 

  93. Ahmad S et al (2022) A novel hybrid deep learning model for metastatic cancer detection. Comput Intell Neurosci. https://doi.org/10.1155/2022/8141530

    Article  Google Scholar 

  94. Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H (2021) A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 9:71194–71209. https://doi.org/10.1109/ACCESS.2021.3079204

    Article  Google Scholar 

  95. Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Singh V (2020) Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet. Chaos Solitons Fractals 138:109944. https://doi.org/10.1016/j.chaos.2020.109944

    Article  MathSciNet  Google Scholar 

  96. Jain PK et al (2022) Attention-based UNet deep learning model for plaque segmentation in carotid ultrasound for stroke risk stratification: an artificial intelligence paradigm. J Cardiovasc Dev Dis 9(10):1–30. https://doi.org/10.3390/jcdd9100326

    Article  Google Scholar 

  97. Shankar K, Sait ARW, Gupta D, Lakshmanaprabu SK, Khanna A, Pandey HM (2020) Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model. Pattern Recognit Lett 133:210–216. https://doi.org/10.1016/j.patrec.2020.02.026

    Article  Google Scholar 

  98. Sarki R, Ahmed K, Wang H, Zhang Y (2020) Automated detection of mild and multi-class diabetic eye diseases using deep learning. Heal Inf Sci Syst 8(1):1–9. https://doi.org/10.1007/s13755-020-00125-5

    Article  Google Scholar 

  99. Vaka AR, Soni B (2020) Breast cancer detection by leveraging machine learning. ICT Express 6(4):320–324. https://doi.org/10.1016/j.icte.2020.04.009

    Article  Google Scholar 

  100. Song Z et al (2020) Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat Commun 11(1):1–9. https://doi.org/10.1038/s41467-020-18147-8

    Article  MathSciNet  Google Scholar 

  101. Dairi A, Harrou F, Zeroual A, Hittawe MM, Sun Y (2021) Comparative study of machine learning methods for COVID-19 transmission forecasting. J Biomed Inform 118:103791. https://doi.org/10.1016/j.jbi.2021.103791

    Article  Google Scholar 

  102. Ali Ahmed SA et al (2022) Comparison and ensemble of 2D and 3D approaches for COVID-19 detection in CT images. Neurocomputing 488:457–469. https://doi.org/10.1016/j.neucom.2022.02.018

    Article  Google Scholar 

  103. Alakus TB, Turkoglu I (2020) Comparison of deep learning approaches to predict COVID-19 infection. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2020.110120

    Article  MathSciNet  Google Scholar 

  104. Hilbert A et al (2019) Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Comput Biol Med 115:103516. https://doi.org/10.1016/j.compbiomed.2019.103516

    Article  Google Scholar 

  105. Hasan NI, Bhattacharjee A (2019) Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomed Signal Process Control 52:128–140. https://doi.org/10.1016/j.bspc.2019.04.005

    Article  Google Scholar 

  106. Zhao W, Jiang W, Qiu X (2021) Deep learning for COVID-19 detection based on CT images. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-93832-2

    Article  Google Scholar 

  107. Serte S, Demirel H (2021) Deep learning for diagnosis of COVID-19 using 3D CT scans. Comput Biol Med 132:104306. https://doi.org/10.1016/j.compbiomed.2021.104306

    Article  Google Scholar 

  108. Asuntha A, Srinivasan A (2020) Deep learning for lung cancer detection and classification. Multimed Tools Appl 79:11–12. https://doi.org/10.1007/s11042-019-08394-3

    Article  Google Scholar 

  109. Hacisoftaoglu RE, Karakaya M, Sallam AB (2020) Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems. Pattern Recognit Lett 135:409–417. https://doi.org/10.1016/j.patrec.2020.04.009

    Article  Google Scholar 

  110. Hamed G, Marey MAER, Amin SES, Tolba MF (2020) Deep learning in breast cancer detection and classification. Adv Intell Syst Comput 1153:322–333. https://doi.org/10.1007/978-3-030-44289-7_30

    Article  Google Scholar 

  111. Yap MH et al (2021) Deep learning in diabetic foot ulcers detection: a comprehensive evaluation. Comput Biol Med 135:104596. https://doi.org/10.1016/j.compbiomed.2021.104596

    Article  Google Scholar 

  112. Dourado CMJM, da Silva SPP, da Nóbrega RVM, Antonio AC, Filho PPR, de Albuquerque VHC (2019) Deep learning IoT system for online stroke detection in skull computed tomography images. Comput Networks 152:25–39. https://doi.org/10.1016/j.comnet.2019.01.019

    Article  Google Scholar 

  113. Kusunose K, Hirata Y, Tsuji T, Kotoku J, Sata M (2020) Deep learning to predict elevated pulmonary artery pressure in patients with suspected pulmonary hypertension using standard chest X ray. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-76359-w

    Article  Google Scholar 

  114. Choi Y-A et al (2021) Deep learning-based stroke disease prediction system using real-time bio signals. Sensors 21:4269. https://doi.org/10.3390/s21134269

    Article  Google Scholar 

  115. Yu K, Tan L, Lin L, Cheng X, Yi Z, Sato T (2021) Deep-learning-empowered breast cancer auxiliary diagnosis for 5GB remote E-health. IEEE Wirel Commun 28(3):54–61. https://doi.org/10.1109/MWC.001.2000374

    Article  Google Scholar 

  116. Anastasopoulos C et al (2020) Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: the synergetic effect of an open, clinically embedded software development platform and machine learning. Eur J Radiol 131:109233. https://doi.org/10.1016/j.ejrad.2020.109233

    Article  Google Scholar 

  117. Gangwar AK, Ravi V (2021) Diabetic retinopathy detection using transfer learning and deep learning. In: Bhateja V, Peng SL, Satapathy SC, Zhang YD (eds) Evolution in computational intelligence. Springer, Singapore. https://doi.org/10.1007/978-981-15-5788-0_64

    Chapter  Google Scholar 

  118. Tang S et al (2021) Ensemble deep learning for COVID-19 case detection from chest X-ray images. IEEE Trans Ind Inf 17(9):6539–6549. https://doi.org/10.1109/TII.2021.3057683

    Article  Google Scholar 

  119. Gupta K, Bajaj V, Ansari IA, Rajendra Acharya U (2022) Hyp-Net: automated detection of hypertension using deep convolutional neural network and Gabor transform techniques with ballistocardiogram signals. Biocybern Biomed Eng 42(3):784–796. https://doi.org/10.1016/j.bbe.2022.06.001

    Article  Google Scholar 

  120. Dai X, Spasic I, Meyer B, Chapman S, Andres F (2019) Machine learning on mobile: an on-device inference app for skin cancer detection. 4th Int Conf Fog Mob Edge Comput. https://doi.org/10.1109/FMEC.2019.8795362

    Article  Google Scholar 

  121. Islam MM, Shamsuddin R (2021) Machine learning to promote health management through lifestyle changes for hypertension patients. Array 12:100090. https://doi.org/10.1016/j.array.2021.100090

    Article  Google Scholar 

  122. Gupta S, Kalaivani S, Rajasundaram A, Ameta GK, Oleiwi AK, Dugbakie BN (2022) Prediction performance of deep learning for colon cancer survival prediction on SEER data  Biomed Res Int. https://doi.org/10.1155/2022/1467070

    Article  Google Scholar 

  123. Aslan MF, Sabanci K (2023) A novel proposal for deep learning-based diabetes prediction: converting clinical data to image data. Diagnostics. https://doi.org/10.3390/diagnostics13040796

    Article  Google Scholar 

  124. Jafarzadeh Ghoushchi S, Ranjbarzadeh R, Najafabadi SA, Osgooei E, Tirkolaee EB (2023) An extended approach to the diagnosis of tumour location in breast cancer using deep learning. J Ambient Intell Humaniz Comput 14(7):8487–8497. https://doi.org/10.1007/s12652-021-03613-y

    Article  Google Scholar 

  125. Wu L et al (2023) Differential diagnosis of secondary hypertension based on deep learning. Artif Intell Med 141:102554. https://doi.org/10.1016/j.artmed.2023.102554

    Article  Google Scholar 

  126. Humayun M, Khalil MI, Almuayqil SN, Jhanjhi NZ (2023) Framework for detecting breast cancer risk presence using deep learning. Electron 12(2):1–16. https://doi.org/10.3390/electronics12020403

    Article  Google Scholar 

  127. Singh SK, Abolghasemi V, Anisi MH (2023) Fuzzy logic with deep learning for detection of skin cancer. Appl Sci. https://doi.org/10.3390/app13158927

    Article  Google Scholar 

  128. Ramkumar G, Seetha J, Priyadarshini R, Gopila M, Saranya G (2023) IoT-based patient monitoring system for predicting heart disease using deep learning. Meas J Int Meas Confed 218:113235. https://doi.org/10.1016/j.measurement.2023.113235

    Article  Google Scholar 

  129. Golalipour K, Akbari E, Hamidi SS, Lee M, Enayatifar R (2021) From clustering to clustering ensemble selection: a review. Eng Appl Artif Intell 104:104388. https://doi.org/10.1016/j.engappai.2021.104388

    Article  Google Scholar 

  130. Ahmed M, Seraj R, Islam SMS (2020) The K-means algorithm: a comprehensive survey and performance evaluation. Electronics 9(8):1295. https://doi.org/10.3390/electronics9081295

    Article  Google Scholar 

  131. Singh U, Gourisaria MK, Mishra BK (2022) A dual dataset approach for the diagnosis of hepatitis C virus using machine learning. 2022 IEEE Int Conf Electron Comput Commun Technol CONECCT. https://doi.org/10.1109/CONECCT55679.2022.9865758

    Article  Google Scholar 

  132. Singh A, Mehta JC, Anand D, Nath P, Pandey B, Khamparia A (2021) An intelligent hybrid approach for hepatitis disease diagnosis: combining enhanced K-means clustering and improved ensemble learning. Expert Syst 38(1):1–13. https://doi.org/10.1111/exsy.12526

    Article  Google Scholar 

  133. Sonawane R, Patil H (2022) Automated heart disease prediction model by hybrid heuristic-based feature optimization and enhanced clustering. Biomed Signal Process Control 72:103260. https://doi.org/10.1016/j.bspc.2021.103260

    Article  Google Scholar 

  134. Pradeepa S, Manjula KR, Vimal S, Khan MS, Chilamkurti N, Luhach AK (2020) DRFS: detecting risk factor of stroke disease from social media using machine learning techniques. Neural Process Lett. https://doi.org/10.1007/s11063-020-10279-8

    Article  Google Scholar 

  135. Kim H, Kim YH, Kim SJ, Choi MT (2021) Gait clustering analysis in patients after stroke using gait kinematics data. Int Conf Control Autom Syst. https://doi.org/10.23919/ICCAS52745.2021.9649908

    Article  Google Scholar 

  136. Vijaya J, Rao M (2022) Heart disease prediction using clustered particle swarm optimization techniques. IEEE 6th Conf Inf Commun Technol CICT. https://doi.org/10.1109/CICT56698.2022.9997925

    Article  Google Scholar 

  137. Gomes J, Lopes J, Guimarães T, Santos MF (2023) Identifying diabetic patient profile through machine learning-based clustering analysis. Procedia Comput Sci 220:862–867. https://doi.org/10.1016/j.procs.2023.03.116

    Article  Google Scholar 

  138. Shakeel PM, Burhanuddin MA, Desa MI (2019) Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Meas J Int Meas Confed 145:702–712. https://doi.org/10.1016/j.measurement.2019.05.027

    Article  Google Scholar 

  139. Balaji K, Lavanya K, Mary AG (2020) Machine learning algorithm for clustering of heart disease and chemoinformatics datasets. Comput Chem Eng 143:107068. https://doi.org/10.1016/j.compchemeng.2020.107068

    Article  Google Scholar 

  140. Nida N, Irtaza A, Javed A, Yousaf MH, Mahmood MT (2019) Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Int J Med Inform 124:37–48. https://doi.org/10.1016/j.ijmedinf.2019.01.005

    Article  Google Scholar 

  141. Fiaidhi J, Mohammed S (2021) Prognosis analysis of thick data: clustering heart diseases risk groups case study. Comput Electr Eng 92:107187. https://doi.org/10.1016/j.compeleceng.2021.107187

    Article  Google Scholar 

  142. Guo X, Lin H, Wu Y, Peng M (2020) A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems. Futur Gener Comput Syst 113:407–417. https://doi.org/10.1016/j.future.2020.07.023

    Article  Google Scholar 

  143. Roshni Thanka M et al (2023) A hybrid approach for melanoma classification using ensemble machine learning techniques with deep transfer learning. Comput Methods Programs Biomed Updat 3:100103. https://doi.org/10.1016/j.cmpbup.2023.100103

    Article  Google Scholar 

  144. Ghorbani R, Ghousi R, Makui A, Atashi A (2020) A new hybrid predictive model to predict the early mortality risk in intensive care units on a highly imbalanced dataset. IEEE Access 8:141066–141079. https://doi.org/10.1109/ACCESS.2020.3013320

    Article  Google Scholar 

  145. Ali F et al (2020) A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf Fusion 63:208–222. https://doi.org/10.1016/j.inffus.2020.06.008

    Article  Google Scholar 

  146. Wang Z et al (2019) Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access 7:105146–105158. https://doi.org/10.1109/ACCESS.2019.2892795

    Article  Google Scholar 

  147. Zheng J, Lin D, Gao Z, Wang S, He M, Fan J (2020) Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 8:96946–96954. https://doi.org/10.1109/ACCESS.2020.2993536

    Article  Google Scholar 

  148. Gadekallu TR et al (2020) Early detection of diabetic retinopathy using pca-firefly based deep learning model. Electron 9(2):1–16. https://doi.org/10.3390/electronics9020274

    Article  Google Scholar 

  149. Islam MT, Rafa SR, Kibria MG (2020) Early prediction of heart disease using pca and hybrid genetic algorithm with k-means. ICCI—23rd Trd Int Conf Comput Inf Technol Proc. https://doi.org/10.1109/ICCIT51783.2020.9392655

    Article  Google Scholar 

  150. Baccouche A, Garcia-Zapirain B, Olea CC, Elmaghraby A (2020) Ensemble deep learning models for heart disease classification: a case study from Mexico. Inf 11(4):1–28. https://doi.org/10.3390/INFO11040207

    Article  Google Scholar 

  151. Kavitha M, Gnaneswar G, Dinesh R, Sai YR, Suraj RS (2021) Heart disease prediction using hybrid machine learning model. 6th Int Conf Invent Comput Technol (ICICT). https://doi.org/10.1109/ICICT50816.2021.9358597

    Article  Google Scholar 

  152. Saravanan S, Swaminathan K (2021) Hybrid K-means and support vector machine to predict heart failure. Proc Int Conf Smart Electron Commun ICOSEC. https://doi.org/10.1109/ICOSEC51865.2021.9591738

    Article  Google Scholar 

  153. Thomas R, Judith JE (2020) Hybrid outlier detection in healthcare datasets using DNN and one class-SVM. Proc—4thInt Conf Electron Commun Aerosp Technol. https://doi.org/10.1109/ICECA49313.2020.9297401

    Article  Google Scholar 

  154. Sapra V, Sapra L, Vishnoi A, Srivastava P (2022) Identification of brain stroke using boosted random forest. 2022 Int Conf Adv Comput Commun Mater (ICACCM). https://doi.org/10.1109/ICACCM56405.2022.10009527

    Article  Google Scholar 

  155. Han T et al (2020) Internet of medical things - based on deep learning techniques for segmentation of lung and stroke regions in CT scans. IEEE Access 8:71117–71135. https://doi.org/10.1109/ACCESS.2020.2987932

    Article  Google Scholar 

  156. Fang M et al (2023) A hybrid machine learning approach for hypertension risk prediction. Neural Comput Appl 35(20):14487–14497. https://doi.org/10.1007/s00521-021-06060-0

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Chandra Nayak.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Nayak, S.P., Sahoo, B. et al. Machine Learning in Healthcare Analytics: A State-of-the-Art Review. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10098-3

Navigation