Skip to main content
Log in

Deep Learning Challenges and Prospects in Wireless Sensor Network Deployment

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper explores the transformative integration of deep learning applications in the deployment of Wireless Sensor Networks (WSNs). As WSNs continue to play a pivotal role in diverse domains, the infusion of deep learning techniques offers unprecedented opportunities for enhanced data processing, analysis, and decision-making. The research problem addressed in this paper revolves around navigating the challenges associated with incorporating deep learning into WSN deployment. The methodology involves an extensive literature review, highlighting the increasing role of deep learning in addressing WSN challenges. Key findings underscore the potential improvements in energy efficiency, data processing speed, and accuracy achieved through deep learning-empowered WSNs. The implications of this research extend to diverse applications, including environmental monitoring, healthcare, industrial systems, and smart agriculture. As we delve into the future research agenda, the paper identifies the need for further exploration in areas such as adaptability to dynamic environments, privacy-preserving optimizations, and scalable deep learning models tailored to the unique constraints of WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou G, Zhang R, Huang S (2021) Generalized buffering algorithm. IEEE Access 9:27140–27157. https://doi.org/10.1109/ACCESS.2021.3057719

    Article  Google Scholar 

  2. Ma K et al (2021) Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J 8(17):13343–13354. https://doi.org/10.1109/JIOT.2021.3065966

    Article  Google Scholar 

  3. Cao K, Wang B, Ding H, Lv L, Dong R, Cheng T, Gong F (2021) Improving physical layer security of uplink NOMA via energy harvesting jammers. IEEE Trans Inf Forensics Secur 16:786–799. https://doi.org/10.1109/TIFS.2020.3023277

    Article  Google Scholar 

  4. Zou W, Sun Y, Zhou Y, Lu Q, Nie Y, Sun T, Peng L (2022) Limited sensing and deep data mining: a new exploration of developing city-wide parking guidance systems. IEEE Intell Transp Syst Mag 14(1):198–215. https://doi.org/10.1109/MITS.2020.2970185

    Article  Google Scholar 

  5. Cao K, Ding H, Li W, Lv L, Gao M, Gong F, Wang B (2022) On the ergodic secrecy capacity of intelligent reflecting surface aided wireless powered communication systems. IEEE Wirel Commun Lett. https://doi.org/10.1109/LWC.2022.3199593

    Article  Google Scholar 

  6. Wu H, Jin S, Yue W (2022) Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. J Syst Sci Syst Eng 31(2):133–149. https://doi.org/10.1007/s11518-022-5521-0

    Article  Google Scholar 

  7. Jiang Y, Li X (2022) Broadband cancellation method in an adaptive co-site interference cancellation system. Int J Electron 109(5):854–874. https://doi.org/10.1080/00207217.2021.1941295

    Article  Google Scholar 

  8. Mao Y, Sun R, Wang J, Cheng Q, Kiong LC, Ochieng WY (2022) New time-differenced carrier phase approach to GNSS/INS integration. GPS Solut 26(4):122. https://doi.org/10.1007/s10291-022-01314-3

    Article  Google Scholar 

  9. Mao Y, Zhu Y, Tang Z, Chen Z (2022) A novel airspace planning algorithm for cooperative target localization. Electronics 11(18):2950. https://doi.org/10.3390/electronics11182950

    Article  Google Scholar 

  10. Sun G, Xu Z, Yu H, Chen X, Chang V, Vasilakos AV (2020) Low-latency and resource-efficient service function chaining orchestration in network function virtualization. IEEE Internet Things J 7(7):5760–5772. https://doi.org/10.1109/JIOT.2019.2937110

    Article  Google Scholar 

  11. Sun G, Li Y, Liao D, Chang V (2018) Service function chain orchestration across multiple domains: a full mesh aggregation approach. IEEE Trans Netw Serv Manage 15(3):1175–1191. https://doi.org/10.1109/TNSM.2018.2861717

    Article  Google Scholar 

  12. Dai M, Luo L, Ren J, Yu H, Sun G (2022) PSACCF: prioritized online slice admission control considering fairness in 5G/B5G networks. IEEE Trans Netw Sci Eng 9(6):4101–4114. https://doi.org/10.1109/TNSE.2022.3195862

    Article  Google Scholar 

  13. Zhang H, Wu H, Jin H, Li H (2023) High-dynamic and low-cost sensorless control method of high-speed brushless DC motor. IEEE Trans Industr Inf 19(4):5576–5584. https://doi.org/10.1109/TII.2022.3196358

    Article  Google Scholar 

  14. Qu Z, Liu X, Zheng M (2022) Temporal-spatial quantum graph convolutional neural network based on schrödinger approach for traffic congestion prediction. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2022.3203791

    Article  Google Scholar 

  15. Li Q, Lin H, Tan X, Du S (2020) H∞ Consensus for multiagent-based supply chain systems under switching topology and uncertain demands. IEEE Trans Syst, Man, Cybern: Syst 50(12):4905–4918. https://doi.org/10.1109/TSMC.2018.2884510

    Article  Google Scholar 

  16. Yang X, Wang X, Wang S, Puig V (2023) Switching-based adaptive fault-tolerant control for uncertain nonlinear systems against actuator and sensor faults. J Franklin Inst 360(16):11462–11488. https://doi.org/10.1016/j.jfranklin.2023.08.042

    Article  MathSciNet  Google Scholar 

  17. Dai W, Zhou X, Li D, Zhu S, Wang X (2022) Hybrid parallel stochastic configuration networks for industrial data analytics. IEEE Trans Industr Inf 18(4):2331–2341. https://doi.org/10.1109/TII.2021.3096840

    Article  Google Scholar 

  18. Wang Q, Dai W, Zhang C, Zhu J, Ma X (2023) A compact constraint incremental method for random weight networks and its application. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2023.3289798

    Article  PubMed  Google Scholar 

  19. Li L, Yao L (2023) Fault tolerant control of fuzzy stochastic distribution systems with packet dropout and time delay. IEEE Trans Autom Sci Eng. https://doi.org/10.1109/TASE.2023.3266065

    Article  Google Scholar 

  20. Guo Y, Zhang C, Wang C, Jia X (2023) Towards public verifiable and forward-privacy encrypted search by using blockchain. IEEE Trans Dependable Secure Comput 20(3):2111–2126. https://doi.org/10.1109/TDSC.2022.3173291

    Article  Google Scholar 

  21. Fan W, Yang L, Bouguila N (2022) Unsupervised grouped axial data modeling via hierarchical bayesian nonparametric models with watson distributions. IEEE Trans Pattern Anal Mach Intell 44(12):9654–9668. https://doi.org/10.1109/TPAMI.2021.3128271

    Article  PubMed  Google Scholar 

  22. Zhou G, Xu C, Zhang H, Zhou X, Zhao D, Wu G, Zhang L (2022) PMT gain self-adjustment system for high-accuracy echo signal detection. Int J Remote Sens 43(19–24):7213–7235. https://doi.org/10.1080/01431161.2022.2155089

    Article  Google Scholar 

  23. Zhou G, Zhou X, Li W, Zhao D, Song B, Xu C, Zou L (2022) Development of a lightweight single-band bathymetric LiDAR. Remote Sens 14(22):5880. https://doi.org/10.3390/rs14225880

    Article  ADS  Google Scholar 

  24. Zheng W, Gong G, Tian J, Lu S, Wang R, Yin Z, Yin L (2023) Design of a modified transformer architecture based on relative position coding. Int J Comput Intell Syst 16(1):168. https://doi.org/10.1007/s44196-023-00345-z

    Article  Google Scholar 

  25. Jannat MKA, Islam MS, Yang S, Liu H (2023) Efficient Wi-Fi-based human activity recognition using adaptive antenna elimination. IEEE Access 11:105440–105454. https://doi.org/10.1109/ACCESS.2023.3320069

    Article  Google Scholar 

  26. Guo R, Liu H, Liu D (2023) When deep learning-based soft sensors encounter reliability challenges: a practical knowledge-guided adversarial attack and its defense. IEEE Trans Industr Inf. https://doi.org/10.1109/TII.2023.3297663

    Article  Google Scholar 

  27. Wang Y, Sun R, Cheng Q, Ochieng WY (2023) Measurement quality control aided multi-sensor system for improved vehicle navigation in urban areas. IEEE Trans Industr Electron. https://doi.org/10.1109/TIE.2023.3288188

    Article  Google Scholar 

  28. Bo C, Jiangping H, Bijoy G (2023) Finite-time observer based tracking control of heterogeneous multi-AUV systems with partial measurements and intermittent communication. Sci China Inf Sci. https://doi.org/10.1007/s11432-023-3903-6

    Article  Google Scholar 

  29. Fu C, Yuan H, Xu H, Zhang H, Shen L (2023) TMSO-Net: texture adaptive multi-scale observation for light field image depth estimation. J Vis Commun Image Represent 90:103731. https://doi.org/10.1016/j.jvcir.2022.103731

    Article  Google Scholar 

  30. Jiang Y, Liu S, Li M, Zhao N, Wu M (2022) A new adaptive co-site broadband interference cancellation method with auxiliary channel. Digit Commun Netw. https://doi.org/10.1016/j.dcan.2022.10.025

    Article  Google Scholar 

  31. Mi C, Huang S, Zhang Y, Zhang Z, Postolache O (2022) Design and implementation of 3-D measurement method for container handling target. J Marine Sci Eng 10(12):1961. https://doi.org/10.3390/jmse10121961

    Article  Google Scholar 

  32. Dai X, Xiao Z, Jiang H, Alazab M, Lui JCS, Dustdar S, Liu J (2023) Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things. IEEE Trans Ind Inf 19(1):480–490. https://doi.org/10.1109/TII.2022.3158974

    Article  Google Scholar 

  33. Jiang H, Dai X, Xiao Z, Iyengar AK (2022) Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2022.3150432

    Article  Google Scholar 

  34. Dai X, Xiao Z, Jiang H, Lui JCS (2023) UAV-assisted task offloading in vehicular edge computing networks. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2023.3259394

    Article  Google Scholar 

  35. Hu J, Wu Y, Li T, Ghosh BK (2019) Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans Autom Control 64(5):2122–2127. https://doi.org/10.1109/TAC.2018.2872197

    Article  MathSciNet  Google Scholar 

  36. Chen B, Hu J, Zhao Y, Ghosh BK (2022) Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans Syst, Man, Cybern: Syst 52(10):6618–6629. https://doi.org/10.1109/TSMC.2022.3148295

    Article  Google Scholar 

  37. Zhang C, Xiao P, Zhao Z, Liu Z, Yu J, Hu X, Li G (2023) A wearable localized surface plasmons antenna sensor for communication and sweat sensing. IEEE Sens J 23(11):11591–11599. https://doi.org/10.1109/JSEN.2023.3266262

    Article  ADS  Google Scholar 

  38. Li A, Masouros C, Swindlehurst AL, Yu W (2021) 1-Bit massive MIMO transmission: embracing interference with symbol-level precoding. IEEE Commun Mag 59(5):121–127. https://doi.org/10.1109/MCOM.001.2000601

    Article  Google Scholar 

  39. Hou X, Zhang L, Su Y, Gao G, Liu Y, Na Z, Chen T (2023) A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 105:108013. https://doi.org/10.1016/j.nanoen.2022.108013

    Article  CAS  Google Scholar 

  40. Min H, Li Y, Wu X, Wang W, Chen L, Zhao X (2023) A measurement scheduling method for multi-vehicle cooperative localization considering state correlation. Veh Commun. https://doi.org/10.1016/j.vehcom.2023.100682

    Article  Google Scholar 

  41. Zhao X, Fang Y, Min H, Wu X, Wang W, Teixeira R (2024) Potential sources of sensor data anomalies for autonomous vehicles: an overview from road vehicle safety perspective. Expert Syst Appl 236:121358. https://doi.org/10.1016/j.eswa.2023.121358

    Article  Google Scholar 

  42. Huang C, Tu Y, Han Z, Jiang F, Wu F, Jiang Y (2023) Examining the relationship between peer feedback classified by deep learning and online learning burnout. Comput Educ 207:104910. https://doi.org/10.1016/j.compedu.2023.104910

    Article  Google Scholar 

  43. Mou J, Gao K, Duan P, Li J, Garg A, Sharma R (2023) A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Trans Intell Transp Syst 24(12):15527–15539. https://doi.org/10.1109/TITS.2022.3183215

    Article  Google Scholar 

  44. Hou X, Xin L, Fu Y, Na Z, Gao G, Liu Y, Chen T (2023) A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy 118:109034. https://doi.org/10.1016/j.nanoen.2023.109034

    Article  CAS  Google Scholar 

  45. Mo J, Yang H (2023) Sampled value attack detection for busbar differential protection based on a negative selection immune system. J Mod Power Syst Clean Energy 11(2):421–433. https://doi.org/10.35833/MPCE.2021.000318

    Article  Google Scholar 

  46. Liu C, Wu T, Li Z, Ma T, Huang J (2023) Robust online tensor completion for iot streaming data recovery. IEEE Trans Neural Netw Learn Syst 34(12):10178–10192. https://doi.org/10.1109/TNNLS.2022.3165076

    Article  MathSciNet  PubMed  Google Scholar 

  47. Cao B, Zhao J, Gu Y, Fan S, Yang P (2020) Security-aware industrial wireless sensor network deployment optimization. IEEE Trans Industr Inf 16(8):5309–5316. https://doi.org/10.1109/TII.2019.2961340

    Article  Google Scholar 

  48. Cao B, Zhao J, Yang P, Gu Y, Muhammad K, Rodrigues JJPC, de Albuquerque VHC (2020) Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Trans Ind Inf 16(5):3597–3605. https://doi.org/10.1109/TII.2019.2952565

    Article  Google Scholar 

  49. Tian G, Hui Y, Lu W, Tingting W (2023) Rate-distortion optimized quantization for geometry-based point cloud compression. J Electron Imaging 32(1):13047. https://doi.org/10.1117/1.JEI.32.1.013047

    Article  Google Scholar 

  50. Lu J, Osorio C (2022) On the analytical probabilistic modeling of flow transmission across nodes in transportation networks. Transp Res Rec 2676(12):209–225. https://doi.org/10.1177/03611981221094829

    Article  Google Scholar 

  51. Shi Y, Hou X, Na Z, Zhou J, Yu N, Liu S, Liu Y (2023) Bio-inspired attachment mechanism of dynastes hercules: vertical climbing for on-orbit assembly legged robots. J Bionic Eng. https://doi.org/10.1007/s42235-023-00423-0

    Article  Google Scholar 

  52. Xu H, Han S, Li X, Han Z (2023) Anomaly traffic detection based on communication-efficient federated learning in space-air-ground integration network. IEEE Trans Wireless Commun 22(12):9346–9360. https://doi.org/10.1109/TWC.2023.3270179

    Article  Google Scholar 

  53. Xing J, Yuan H, Hamzaoui R, Liu H, Hou J (2023) GQE-Net: a graph-based quality enhancement network for point cloud color attribute. IEEE Trans Image Process 32:6303–6317. https://doi.org/10.1109/TIP.2023.3330086

    Article  ADS  PubMed  Google Scholar 

  54. Sun R, Dai Y, Cheng Q (2023) An adaptive weighting strategy for multisensor integrated navigation in urban areas. IEEE Internet Things J 10(14):12777–12786. https://doi.org/10.1109/JIOT.2023.3256008

    Article  Google Scholar 

  55. Chen J, Xu M, Xu W, Li D, Peng W, Xu H (2023) A flow feedback traffic prediction based on visual quantified features. IEEE Trans Intell Transp Syst 24(9):10067–10075. https://doi.org/10.1109/TITS.2023.3269794

    Article  ADS  Google Scholar 

  56. Chen J, Wang Q, Peng W, Xu H, Li X, Xu W (2022) Disparity-based multiscale fusion network for transportation detection. IEEE Trans Intell Transp Syst 23(10):18855–18863. https://doi.org/10.1109/TITS.2022.3161977

    Article  Google Scholar 

  57. Chen J, Wang Q, Cheng HH, Peng W, Xu W (2022) A review of vision-based traffic semantic understanding in ITSs. IEEE Trans Intell Transp Syst 23(11):19954–19979. https://doi.org/10.1109/TITS.2022.3182410

    Article  Google Scholar 

  58. Xie J, Jiang H, Song W, Yang J (2023) A novel quality control method of time series ocean wave observation data combining deep learning prediction and statistical analysis. J Sea Res 195:102439

    Article  Google Scholar 

  59. Wang N, Hossain E, Bhargava VK (2015) Backhauling 5G small cells: A radio resource management perspective. IEEE Wirel Commun 22:41–49

    Article  Google Scholar 

  60. Giust F, Cominardi L, Bernardos CJ (2015) Distributed mobility management for future 5G networks: overview and analysis of existing approaches. IEEE Commun Mag 53:142–149

    Article  Google Scholar 

  61. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18:1617–1655

    Article  Google Scholar 

  62. Gupta A, Jha RK (2015) A survey of 5G network: architecture and emerging technologies. IEEE Access 3:1206–1232

    Article  Google Scholar 

  63. Zheng K et al (2016) Big data-driven optimization for mobile networks toward 5G. IEEE Netw 30:44–51

    Article  Google Scholar 

  64. Jiang C et al (2017) Machine learning paradigms for next-generation wireless networks. IEEE Wirel Commun 24:98–105

    Article  Google Scholar 

  65. Nguyen DD, Nguyen HX, White LB (2017) Reinforcement learning with network-assisted feedback for heterogeneous RAT selection. IEEE Trans Wirel Commun 16:6062–6076

    Article  Google Scholar 

  66. Zhang, C., Zhou, P., Li, C. & Liu, L. A Convolutional Neural Network for Leaves Recognition Using Data Augmentation. in 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing 2143–2150 (2015). doi:https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.318

  67. Wang M, Cui Y, Wang X, Xiao S, Jiang J (2018) Machine learning for networking: workflow. Adv Oppor IEEE Netw 32:92–99

    Article  Google Scholar 

  68. Alsheikh MA, Niyato D, Lin S, Tan H, Han Z (2016) Mobile big data analytics using deep learning and apache spark. IEEE Netw 30:22–29

    Article  Google Scholar 

  69. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34:26–38

    Article  ADS  Google Scholar 

  70. Chen X-W, Lin X (2014) Big data deep learning: challenges and perspectives. IEEE Access 2:514–525

    Article  Google Scholar 

  71. Gheisari, M., Wang, G. & Bhuiyan, M. Z. A. (2017) A Survey on Deep Learning in Big Data. in 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) vol. 2 173–180

  72. Yu S, Liu M, Dou W, Liu X, Zhou S (2017) Networking for big data: a survey. IEEE Commun Surv Tutorials 19:531–549

    Article  Google Scholar 

  73. Alsheikh MA, Lin S, Niyato D, Tan H-P (2014) Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun Surv Tutorials 16:1996–2018

    Article  Google Scholar 

  74. Tsai C-W, Lai C-F, Chiang M-C, Yang LT (2014) Data mining for internet of things: a survey. IEEE Commun Surv Tutorials 16:77–97

    Article  Google Scholar 

  75. Cheng X, Fang L, Hong X, Yang L (2017) Exploiting mobile big data: sources, features, and applications. IEEE Netw 31:72–79

    Article  Google Scholar 

  76. Bkassiny M, Li Y, Jayaweera SK (2013) A survey on machine-learning techniques in cognitive radios. IEEE Commun Surv Tutorials 15:1136–1159

    Article  Google Scholar 

  77. Elijah O, Leow CY, Rahman TA, Nunoo S, Iliya SZ (2016) A comprehensive survey of pilot contamination in massive MIMO—5G system. IEEE Commun Surv Tutorials 18:905–923

    Article  Google Scholar 

  78. Buzzi S et al (2016) A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J Sel Areas Commun 34:697–709

    Article  Google Scholar 

  79. Peng M, Li Y, Zhao Z, Wang C (2015) System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Netw 29:6–14

    Article  CAS  Google Scholar 

  80. Foukas X, Patounas G, Elmokashfi A, Marina MK (2017) Network slicing in 5G: survey and challenges. IEEE Commun Mag 55:94–100

    Article  Google Scholar 

  81. Taleb T et al (2017) On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun Surv Tutorials 19:1657–1681

    Article  Google Scholar 

  82. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tutorials 19:1628–1656

    Article  Google Scholar 

  83. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutorials 19:2322–2358

    Article  Google Scholar 

  84. Wang Y et al (2017) A Data-driven architecture for personalized QoE management in 5G wireless networks. IEEE Wirel Commun 24:102–110

    Article  ADS  Google Scholar 

  85. Han Q, Liang S, Zhang H (2015) Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world. IEEE Netw 29:40–45

    Article  Google Scholar 

  86. Chen X, Wu J, Cai Y, Zhang H, Chen T (2015) Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J Sel Areas Commun 33:627–640

    Article  Google Scholar 

  87. Wu J, Guo S, Li J, Zeng D (2016) Big data meet green challenges: big data toward green applications. IEEE Syst J 10:888–900

    Article  ADS  Google Scholar 

  88. Buda, T. S. et al. (2016) Can machine learning aid in delivering new use cases and scenarios in 5G? in NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium 1279–1284 doi:https://doi.org/10.1109/NOMS.2016.7503003.

  89. Imran A, Zoha A, Abu-Dayya A (2014) Challenges in 5G: how to empower SON with big data for enabling 5G. IEEE Netw 28:27–33

    Article  Google Scholar 

  90. Keshavamurthy, B. & Ashraf, M. Conceptual design of proactive SONs based on the Big Data framework for 5G cellular networks: A novel Machine Learning perspective facilitating a shift in the SON paradigm. in 2016 International Conference System Modeling & Advancement in Research Trends (SMART) 298–304 (2016). doi:https://doi.org/10.1109/SYSMART.2016.7894539

  91. Klaine PV, Imran MA, Onireti O, Souza RD (2017) A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Commun Surv Tutorials 19:2392–2431

    Article  Google Scholar 

  92. Li R et al (2017) Intelligent 5G: when cellular networks meet artificial intelligence. IEEE Wirel Commun 24:175–183

    Article  Google Scholar 

  93. Bui N et al (2017) A survey of anticipatory mobile networking: context-based classification, prediction methodologies, and optimization techniques. IEEE Commun Surv Tutorials 19:1790–1821

    Article  Google Scholar 

  94. Atat R et al (2018) Big data meet cyber-physical systems: a panoramic survey. IEEE Access 6:73603–73636

    Article  Google Scholar 

  95. Cheng X, Fang L, Yang L, Cui S (2017) Mobile big data: the fuel for data-driven wireless. IEEE Internet Things J 4:1489–1516

    Article  Google Scholar 

  96. Kato N et al (2017) The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel Commun 24:146–153

    Article  Google Scholar 

  97. Zorzi M, Zanella A, Testolin A, De Grazia MDF, Zorzi M (2015) Cognition-based networks: a new perspective on network optimization using learning and distributed intelligence. IEEE Access 3:1512–1530

    Article  Google Scholar 

  98. Fadlullah ZM et al (2017) State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun Surv Tutorials 19:2432–2455

    Article  Google Scholar 

  99. Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M (2018) Deep learning for iot big data and streaming analytics: a survey. IEEE Commun Surv Tutorials 20:2923–2960

    Article  Google Scholar 

  100. Mao Q, Hu F, Hao Q (2018) Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun Surv Tutorials 20:2595–2621

    Article  Google Scholar 

  101. Gharaibeh A et al (2017) Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun Surv Tutorials 19:2456–2501

    Article  Google Scholar 

  102. Szegedy, C. et al. Going deeper with convolutions. in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1–9 (2015). doi:https://doi.org/10.1109/CVPR.2015.7298594

  103. Mao, J., Chen, X., Nixon, K. W., Krieger, C. & Chen, Y. MoDNN: Local distributed mobile computing system for Deep Neural Network. in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 1396–1401 (2017). doi:https://doi.org/10.23919/DATE.2017.7927211

  104. Mukherjee M, Shu L, Wang D (2018) Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun Surv Tutorials 20:1826–1857

    Article  Google Scholar 

  105. Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554

    Article  MathSciNet  PubMed  Google Scholar 

  106. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016). doi:https://doi.org/10.1109/CVPR.2016.90

  107. Ji S, Xu W, Yang M, Yu K (2013) 3D Convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35:221–231

    Article  PubMed  Google Scholar 

  108. Huang, G., Liu, Z., Maaten, L. Van Der & Weinberger, K. Q. Densely Connected Convolutional Networks. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2261–2269 (2017). doi:https://doi.org/10.1109/CVPR.2017.243

  109. Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14:1771–1800

    Article  PubMed  Google Scholar 

  110. Mao B et al (2017) Routing or computing? the paradigm shift towards intelligent computer network packet transmission based on deep learning. IEEE Trans Comput 66:1946–1960

    Article  MathSciNet  Google Scholar 

  111. Raghavendra, R. & Busch, C. Learning deeply coupled autoencoders for smartphone based robust periocular verification. in 2016 IEEE International Conference on Image Processing (ICIP) 325–329 (2016). doi:https://doi.org/10.1109/ICIP.2016.7532372

  112. Jeon, Y. & Kim, J. Active Convolution: Learning the Shape of Convolution for Image Classification. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1846–1854 (2017). doi:https://doi.org/10.1109/CVPR.2017.200

  113. Dai, J. et al. Deformable Convolutional Networks. in 2017 IEEE International Conference on Computer Vision (ICCV) 764–773 (2017). doi:https://doi.org/10.1109/ICCV.2017.89

  114. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Networks 5:157–166

    Article  CAS  PubMed  Google Scholar 

  115. Graves, A., Jaitly, N. & Mohamed, A. Hybrid speech recognition with Deep Bidirectional LSTM. in 2013 IEEE Workshop on Automatic Speech Recognition and Understanding 273–278 (2013). doi:https://doi.org/10.1109/ASRU.2013.6707742

  116. Priyadarshi Rahul (2023) Energy-efficient routing in wireless sensor networks: a meta-heuristic and artificial intelligence-based approach: a comprehensive review. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-023-10039-6

    Article  Google Scholar 

  117. Li, J. et al. Perceptual Generative Adversarial Networks for Small Object Detection. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1951–1959 (2017). doi:https://doi.org/10.1109/CVPR.2017.211

  118. Li, Y., Liu, S., Yang, J. & Yang, M.-H. Generative Face Completion. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 5892–5900 (2017). doi:https://doi.org/10.1109/CVPR.2017.624

  119. Priyadarshi R, Singh L, Singh A, Thakur A (2018) SEEN: stable energy efficient network for wireless sensor network. In: 2018 5th international conference on signal processing and integrated networks (SPIN), pp. 338–342

  120. Liu Y-J, Tang L, Tong S, Chen CLP, Li D-J (2015) Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans Neural Netw Learn Syst 26:165–176

    Article  MathSciNet  PubMed  Google Scholar 

  121. Gupta T, Kumar A, Priyadarshi R (2020) A novel hybrid precoding technique for millimeter wave. In Nanoelectronics, circuits and communication systems: proceeding of NCCS 2018, pp. 481–493

  122. Nie, L., Jiang, D., Yu, S. & Song, H. Network Traffic Prediction Based on Deep Belief Network in Wireless Mesh Backbone Networks. in 2017 IEEE Wireless Communications and Networking Conference (WCNC) 1–5 (2017). doi:https://doi.org/10.1109/WCNC.2017.7925498

  123. Priyadarshi R, Gupta B (2020) Coverage area enhancement in wireless sensor network. Microsyst Technol 26(5):1417–1426

    Article  Google Scholar 

  124. Huang, C.-W., Chiang, C.-T. & Li, Q. A study of deep learning networks on mobile traffic forecasting. in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) 1–6 (2017). doi:https://doi.org/10.1109/PIMRC.2017.8292737

  125. Anurag A, Priyadarshi R, Goel A, Gupta B (2020) 2-D coverage optimization in WSN using a novel variant of particle swarm optimisation. In 2020 7th international conference on signal processing and integrated networks (SPIN), pp. 663–668

  126. Navabi, S., Wang, C., Bursalioglu, O. Y. & Papadopoulos, H. Predicting Wireless Channel Features Using Neural Networks. in 2018 IEEE International Conference on Communications (ICC) 1–6 (2018). doi:https://doi.org/10.1109/ICC.2018.8422221

  127. Priyadarshi R, Singh L, Singh A et al. (2018) A novel HEED protocol for wireless sensor networks. In 2018 5th international conference on signal processing and integrated networks (SPIN), pp. 296–300

  128. Wang, W., Zhu, M., Zeng, X., Ye, X. & Sheng, Y. Malware traffic classification using convolutional neural network for representation learning. in 2017 International Conference on Information Networking (ICOIN) 712–717 (2017). doi:https://doi.org/10.1109/ICOIN.2017.7899588

  129. Pandey A, Kumar D, Priyadarshi R, Nath V (2022) Development of smart village for better lifestyle of farmers by crop and health monitoring system. In: Microelectronics, communication systems, machine learning and internet of things: select proceedings of MCMI 2020. Springer: Singapore, pp. 689–694

  130. Priyadarshi R, Soni SK, Sharma P (2019) An enhanced GEAR protocol for wireless sensor networks. In: Nath V, Mandal J (eds) Nanoelectronics, circuits and communication systems. Lecture notes in electrical engineering, vol 511. Springer, Singapore. https://doi.org/10.1007/978-981-13-0776-8_27

    Chapter  Google Scholar 

  131. Rawat P, Chauhan S, Priyadarshi R (2021) A novel heterogeneous clustering protocol for lifetime maximization of wireless sensor network. Wireless Pers Commun 117:825–841

    Article  Google Scholar 

  132. Feng J, Chen X, Gao R, Zeng M, Li Y (2018) DeepTP: an end-to-end neural network for mobile cellular traffic prediction. IEEE Netw 32:108–115

    Article  Google Scholar 

  133. Priyadarshi, R., Yadav, S., Bilyan, D. (2019). Performance and Comparison Analysis of MIEEP Routing Protocol Over Adapted LEACH Protocol. https://doi.org/10.1007/978-981-13-6295-8_20

  134. Li, H. & Trocan, M. Personal Health Indicators by Deep Learning of Smart Phone Sensor Data. in 2017 3rd IEEE International Conference on Cybernetics (CYBCONF) 1–5 (2017). doi:https://doi.org/10.1109/CYBConf.2017.7985800

  135. Priyadarshi R, Gupta B (2023) 2-D coverage optimization in obstacle-based FOI in WSN using modified PSO. J Supercomput 79(5):4847–4869

    Article  Google Scholar 

  136. Khan, U. M., Kabir, Z., Hassan, S. A. & Ahmed, S. H. A Deep Learning Framework Using Passive WiFi Sensing for Respiration Monitoring. in GLOBECOM 2017 - 2017 IEEE Global Communications Conference 1–6 (2017). doi:https://doi.org/10.1109/GLOCOM.2017.8255027

  137. Priyadarshi R, Rawat P, Nath V, Acharya B, Shylashree N (2020) Three level heterogeneous clustering protocol for wireless sensor network. Microsyst Technol 26:3855–3864

    Article  Google Scholar 

  138. Sood SK, Agrewal M (2023) Quantum machine learning for computational methods in engineering: a systematic review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-10027-w

    Article  Google Scholar 

  139. Priyadarshi, R., Yadav, S., Bilyan, D. (2019). Performance Analysis of Adapted Selection Based Protocol Over LEACH Protocol. https://doi.org/10.1007/978-981-13-6295-8_21

  140. Rawat P, Chauhan S, Priyadarshi R (2020) Energy-efficient clusterhead selection scheme in heterogeneous wireless sensor network. J Circ Syst Comput 29(13):2050204

    Article  Google Scholar 

  141. Alkhateeb A et al (2018) Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access 6:37328–37348

    Article  Google Scholar 

  142. Jain, V., Randheer, Priyadarshi, R., Thakur, A. (2019). Performance Analysis of Block Matching Algorithms. In: Nath, V., Mandal, J. (eds) Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems. Lecture Notes in Electrical Engineering, vol 556. Springer, Singapore. https://doi.org/10.1007/978-981-13-7091-5_7

  143. Su, X., Zhang, D., Li, W. & Zhao, K. A Deep Learning Approach to Android Malware Feature Learning and Detection. in 2016 IEEE Trustcom/BigDataSE/ISPA 244–251 (2016). doi:https://doi.org/10.1109/TrustCom.2016.0070

  144. R. Priyadarshi, M. P. Singh, A. Bhardwaj and P. Sharma, "Amount of fading analysis for composite fading channel using holtzman approximation," 2017 Fourth International Conference on Image Information Processing (ICIIP), Shimla, India, 2017, pp. 1–5, doi: https://doi.org/10.1109/ICIIP.2017.8313759

  145. Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell 28:594–611

    Article  PubMed  Google Scholar 

  146. Edel, M. & Köppe, E. Binarized-BLSTM-RNN based Human Activity Recognition. in 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN) 1–7 (2016). doi:https://doi.org/10.1109/IPIN.2016.7743581

  147. Priyadarshi R, Soni SK, Bhadu R, Nath V (2018) Performance analysis of diamond search algorithm over full search algorithm. Microsyst Technol 24:2529–2537

    Article  Google Scholar 

  148. Tekouabou SCK, Gherghina ŞC, Kameni ED et al (2023) AI-based on machine learning methods for urban real estate prediction: a systematic survey. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-023-10010-5

    Article  Google Scholar 

  149. Nguyen, K. K. et al. Cyberattack detection in mobile cloud computing: A deep learning approach. in 2018 IEEE Wireless Communications and Networking Conference (WCNC) 1–6 (2018). doi:https://doi.org/10.1109/WCNC.2018.8376973

  150. Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci Technol 21:114–123

    Article  Google Scholar 

  151. Wang X, Gao L, Mao S (2016) CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet Things J 3:1113–1123

    Article  Google Scholar 

  152. Priyadarshi R, Gupta B, Anurag A (2020) Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. J Supercomput 76:7333–7373

    Article  Google Scholar 

  153. Zhou Y, Fadlullah ZM, Mao B, Kato N (2018) A Deep-learning-based radio resource assignment technique for 5G ultra dense networks. IEEE Netw 32:28–34

    Article  Google Scholar 

  154. McGraw, I. et al. Personalized speech recognition on mobile devices. in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 5955–5959 (2016). doi:https://doi.org/10.1109/ICASSP.2016.7472820

  155. Priyadarshi R, Rawat P, Nath V (2019) Energy dependent cluster formation in heterogeneous wireless sensor network. Microsyst Technol 25:2313–2321

    Article  Google Scholar 

  156. Seneviratne S et al (2017) A survey of wearable devices and challenges. IEEE Commun Surv Tutorials 19:2573–2620

    Article  Google Scholar 

  157. Priyadarshi R, Singh A, Agarwal D, Verma UC, Singh A (2023) Emerging smart manufactory: industry 40 and manufacturing in india: the next wave. In: Nath V, Mandal JK (eds) Microelectronics, communication systems, machine learning and internet of things. Lecture notes in electrical engineering, vol 887. Springer, Singapore

    Google Scholar 

  158. Fang S-H, Fei Y-X, Xu Z, Tsao Y (2017) Learning transportation modes from smartphone sensors based on deep neural network. IEEE Sens J 17:6111–6118

    Article  ADS  Google Scholar 

  159. Sateesh, V.A., Kumar, A., Priyadarshi, R., Nath, V. (2021). A Novel Deployment Scheme to Enhance the Coverage in Wireless Sensor Network. In: Nath, V., Mandal, J.K. (eds) Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems. Lecture Notes in Electrical Engineering, vol 673. Springer, Singapore. https://doi.org/10.1007/978-981-15-5546-6_82

  160. Priyadarshi R, Soni SK, Nath V (2018) Energy efficient cluster head formation in wireless sensor network. Microsyst Technol 24:4775–4784

    Article  Google Scholar 

  161. Li H, Ota K, Dong M (2018) Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Netw 32:96–101

    Article  Google Scholar 

  162. Kumar S, Soni SK, Randheer Priyadarshi, R. (2020) Performance analysis of novel energy aware routing in wireless sensor network. In: Nath V, Mandal J (eds) Nanoelectronics, circuits and communication systems NCCS 2018. Lecture notes in electrical engineering, vol 642. Springer, Singapore. https://doi.org/10.1007/978-981-15-2854-5_44

    Chapter  Google Scholar 

  163. Liu J, Krishnamachari B, Zhou S, Niu Z (2018) DeepNap: data-driven base station sleeping operations through deep reinforcement learning. IEEE Internet Things J 5:4273–4282

    Article  Google Scholar 

  164. Priyadarshi, Rahul, and Abhyuday Bhardwaj. "NODE NON-UNIFORMITY FOR ENERGY EFFECTUAL COORDINATION IN WSN." International Journal on Information Technologies & Security 9, no. 4 (2017)

  165. Mennes, R., Camelo, M., Claeys, M. & Latré, S. A neural-network-based MF-TDMA MAC scheduler for collaborative wireless networks. in 2018 IEEE Wireless Communications and Networking Conference (WCNC) 1–6 (2018). doi:https://doi.org/10.1109/WCNC.2018.8377044

  166. Priyadarshi R, Gupta B, Anurag A (2020) Wireless sensor networks deployment: a result oriented analysis. Wirel Pers Commun 113:843–866

    Article  Google Scholar 

  167. Priyadarshi R, Rana H, Srivastava A, Nath V (2023) A novel approach for sink route in wireless sensor network. In: Nath V, Mandal JK (eds) Microelectronics, communication systems, machine learning and internet of things. Lecture notes in electrical engineering, vol 887. Springer, Singapore

    Google Scholar 

  168. Wang J, Zhang X, Gao Q, Yue H, Wang H (2017) Device-free wireless localization and activity recognition: a deep learning approach. IEEE Trans Veh Technol 66:6258–6267

    Article  Google Scholar 

  169. Mohammadi M, Al-Fuqaha A, Guizani M, Oh J-S (2018) Semisupervised deep reinforcement learning in support of IoT and smart city services. IEEE Internet Things J 5:624–635

    Article  Google Scholar 

  170. Priyadarshi R, Bhardwaj P, Gupta P, Nath V (2022) Utilization of smartphone-based wireless sensors in agricultural science: a state of art. Microelectron Commun Syst Mach Learn IoT 2020:681–688

    Google Scholar 

  171. Lee W, Kim M, Cho D-H (2019) Deep learning based transmit power control in underlaid device-to-device communication. IEEE Syst J 13:2551–2554

    Article  ADS  Google Scholar 

  172. Singh L, Kumar A, Priyadarshi R (2020) Performance and comparison analysis of image processing based forest fire detection. In: Nath V, Mandal J (eds) Nanoelectronics, circuits and communication systems nccs 2018. Lecture notes in electrical engineering, vol 642. Springer, Singapore. https://doi.org/10.1007/978-981-15-2854-5_41

    Chapter  Google Scholar 

  173. Wang X, Gao L, Mao S, Pandey S (2017) CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66:763–776

    CAS  Google Scholar 

  174. Chen H, Zhang Y, Li W, Tao X, Zhang P (2017) ConFi: convolutional neural networks based indoor Wi-Fi localization using channel state information. IEEE Access 5:18066–18074

    Article  Google Scholar 

  175. Priyadarshi, R., Kumar, R.R. (2021). An Energy-Efficient LEACH Routing Protocol for Wireless Sensor Networks. In: Nath, V., Mandal, J.K. (eds) Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems. Lecture Notes in Electrical Engineering, vol 673. Springer, Singapore. https://doi.org/10.1007/978-981-15-5546-6_35

  176. Li X et al (2018) Intelligent power control for spectrum sharing in cognitive radios: a deep reinforcement learning approach. IEEE Access 6:25463–25473

    Article  Google Scholar 

  177. Xiao C, Yang D, Chen Z, Tan G (2017) 3-D BLE Indoor localization based on denoising autoencoder. IEEE Access 5:12751–12760

    Article  Google Scholar 

  178. Luo, T. & Nagarajan, S. G. Distributed Anomaly Detection Using Autoencoder Neural Networks in WSN for IoT. in 2018 IEEE International Conference on Communications (ICC) 1–6 (2018). doi:https://doi.org/10.1109/ICC.2018.8422402

  179. Sun W et al (2017) WNN-LQE: wavelet-neural-network-based link quality estimation for smart grid WSNs. IEEE Access 5:12788–12797

    Article  Google Scholar 

  180. Kang J, Park Y-J, Lee J, Wang S-H, Eom D-S (2018) Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems. IEEE Trans Ind Electron 65:4279–4289

    Article  Google Scholar 

  181. Priyadarshi R, Gupta B (2021) Area coverage optimization in three-dimensional wireless sensor network. Wirel Pers Commun 117:843–865

    Article  Google Scholar 

  182. Assaf AE, Zaidi S, Affes S, Kandil N (2016) Robust ANNs-based WSN localization in the presence of anisotropic signal attenuation. IEEE Wirel Commun Lett 5:504–507

    Article  Google Scholar 

Download references

Acknowledgements

Intelligent fruit sorting system based on monocular vision(20210302124522)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Priyadarshi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Ma, L. & Priyadarshi, R. Deep Learning Challenges and Prospects in Wireless Sensor Network Deployment. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10079-6

Navigation