Skip to main content
Log in

A Comprehensive Survey on Artificial Electric Field Algorithm: Theories and Applications

  • Survey article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The artificial electric field algorithm (AEFA) is a population-based metaheuristic optimization algorithm. It is inspired by the electrostatic field theory and fundamental laws of physics. The very first version of AEFA was introduced for solving continuous optimization problems in 2019. Over the years, AEFA has undergone many evolutionary developments, branching out into many variants for different objectives. The journey of AEFA has been very progressive, many variants of AEFA are developed across the globe to solve constrained, unconstrained, discrete, and combinatorial optimization problems. These variants of AEFA have successfully addressed many engineering, design, medical, and machine-learning problems. Some good hybrid algorithms also come into existence with a significant contribution of AEFA. Its theoretical development is also carried out to discuss and analyze the stability and convergence. This article presents an extensive taxonomy of AEFA and its application to various engineering optimization problems. It is a collection of in-depth research on AEFA over the past few years. This article also compiles major AEFA variants, their basic theories, and findings especially a list of engineering applications solved using AEFAs. This presented taxonomy of AEFA provides a one-step solution for future researchers who aim to work on AEFA. The presented comparative analysis and deep studies on AEFA is a state-of-the-art work to understand the past and future research on AEFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Algorithm 2
Fig. 12
Algorithm 3
Algorithm 4
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. https://www.scopus.com/search/form.uri?display=basic#basic

  2. https://scholar.google.com/schhp?hl=en &as_sdt=0,5

  3. https://app.dimensions.ai/discover/publication

References

  1. Carrasco J, Salvador García MM, Rueda SD, Herrera F (2020) Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review. Swarm Evol Comput 54:100665

    Article  Google Scholar 

  2. Kanchan R, Kusum D, Swagatam D (2023) An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artif Intell Rev 56:13187–13257

    Article  Google Scholar 

  3. Janmenjoy Nayak H, Swapnarekha BN, Dhiman G, Vimal S (2023) 25 years of particle swarm optimization: flourishing voyage of two decades. Arch Comput Methods Eng 30(3):1663–1725

    Article  Google Scholar 

  4. Rao SS (2019) Engineering optimization: theory and practice. Wiley, New York

    Book  Google Scholar 

  5. Venkata Rao R, Rai DP, Balic J (2017) A multi-objective algorithm for optimization of modern machining processes. Eng Appl Artif Intell 61:103–125

    Article  Google Scholar 

  6. Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA (2022) White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl-Based Syst 243:108457

    Article  Google Scholar 

  7. Pop CB, Cioara T, Anghel I, Antal M, Chifu VR, Antal C, Salomie I (2022) Review of bio-inspired optimization applications in renewable-powered smart grids: emerging population-based metaheuristics. Energy Rep 8:11769–11798

    Article  Google Scholar 

  8. Alam T, Qamar S, Dixit A, Benaida M (2020) Genetic algorithm: reviews, implementations, and applications. arXiv preprint arXiv:2007.12673

  9. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341

    Article  MathSciNet  Google Scholar 

  10. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  11. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol 4, pp 1942–1948. IEEE

  12. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  13. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915

    Article  ADS  Google Scholar 

  14. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  Google Scholar 

  15. Yadav A, Deep K, Kim JH, Nagar AK (2016) Gravitational swarm optimizer for global optimization. Swarm Evol Comput 31:64–89

    Article  Google Scholar 

  16. Yadav A, Yadav A (2019) Aefa: artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108

    Article  Google Scholar 

  17. Mohamed AW, Hadi AA, Mohamed AK (2020) Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int J Mach Learn Cybern 11(7):1501–1529

    Article  Google Scholar 

  18. Al-Betar MA, Alyasseri ZAA, Awadallah MA, Doush IA (2021) Coronavirus herd immunity optimizer (chio). Neural Comput Appl 33:5011–5042

    Article  PubMed  Google Scholar 

  19. Braik M, Ryalat MH, Al-Zoubi H (2022) A novel meta-heuristic algorithm for solving numerical optimization problems: Ali baba and the forty thieves. Neural Comput Appl 34(1):409–455

    Article  Google Scholar 

  20. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  ADS  Google Scholar 

  21. Braik M, Sheta A, Al-Hiary H (2021) A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm. Neural Comput Appl 33:2515–2547

    Article  Google Scholar 

  22. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Article  Google Scholar 

  23. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Article  Google Scholar 

  24. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  25. Chauhan D, Yadav A (2023) Optimizing the parameters of hybrid active power filters through a comprehensive and dynamic multi-swarm gravitational search algorithm. Eng Appl Artif Intell 123:106469

    Article  Google Scholar 

  26. Meraihi Y, Gabis AB, Ramdane-Cherif A, Acheli D (2021) A comprehensive survey of crow search algorithm and its applications. Artif Intell Rev 54(4):2669–2716

    Article  Google Scholar 

  27. Hashim FA, Hussien AG (2022) Snake optimizer: a novel meta-heuristic optimization algorithm. Knowl-Based Syst 242:108320

    Article  Google Scholar 

  28. Morales-Castañeda B, Zaldivar D, Cuevas E, Fausto F, Rodríguez A (2020) A better balance in metaheuristic algorithms: does it exist? Swarm Evol Comput 54:100671

    Article  Google Scholar 

  29. Aranha C, Camacho CL, Villalón FC, Dorigo M, Ruiz R, Sevaux M, Sörensen K, Stützle T (2022) Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell 16(1):1–6

    Article  Google Scholar 

  30. Sörensen K (2015) Metaheuristics-the metaphor exposed. Int Trans Oper Res 22(1):3–18

    Article  MathSciNet  Google Scholar 

  31. Halliday D, Resnick R, Walker J (2013) Fundamentals of physics. Wiley, New York

    Google Scholar 

  32. Demirören A, Ekinci S, Hekimoğlu B, Izci D (2021) Opposition-based artificial electric field algorithm and its application to fopid controller design for unstable magnetic ball suspension system. Eng Sci Technol 24(2):469–479

    Google Scholar 

  33. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), Vol 1, pp 695–701. IEEE

  34. Sharma P, Mishra A, Saxena A, Shankar R (2021) A novel hybridized fuzzy pi-ladrc based improved frequency regulation for restructured power system integrating renewable energy and electric vehicles. IEEE Access 9:7597–7617

    Article  Google Scholar 

  35. Tian Y, Liu L, Wang X, Dong L, Gill R, Tomar R (2022) Improved artificial electric field algorithm based on multi-strategy and its application. Informatica 46(3)

  36. Karimi F, Attarpour A, Amirfattahi R, Nezhad AZ (2019) Computational analysis of non-invasive deep brain stimulation based on interfering electric fields. Phys Med Biol 64(23):235010

    Article  PubMed  Google Scholar 

  37. Cheng J, Peizhen X, Xiong Y (2022) An improved artificial electric field algorithm and its application in neural network optimization. Comput Electr Eng 101:108111

    Article  Google Scholar 

  38. Dikshit C, Anupam Y, Ferrante N (2023) A multi-agent optimization algorithm and its application to training multilayer perceptron models. Evolv Syst. https://doi.org/10.1007/s12530-023-09518-9

    Article  Google Scholar 

  39. Adegboye OR, Ülker ED (2023) Gaussian mutation specular reflection learning with local escaping operator based artificial electric field algorithm and its engineering application. Appl Sci 13(7):4157

    Article  CAS  Google Scholar 

  40. Zhang Y (2021) Backtracking search algorithm with specular reflection learning for global optimization. Knowl-Based Syst 212:106546

    Article  Google Scholar 

  41. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci 540:131–159

    Article  MathSciNet  Google Scholar 

  42. Houssein Essam H, Hashim Fatma A, Seydali F, Hegazy R (2021) An efficient modified artificial electric field algorithm for solving optimization problems and parameter estimation of fuel cell. Int J Energy Res 45(14):20199–20218

    Article  Google Scholar 

  43. Fister I Jr, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  44. Dikshit C, Anupam Y (2023) An adaptive artificial electric field algorithm for continuous optimization problems. Expert Syst 40(9):13380

    Article  Google Scholar 

  45. Liang JJ, Kai Qin A, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  46. Sinthia P, Malathi M (2021) Cancer detection using convolutional neural network optimized by multistrategy artificial electric field algorithm. Int J Imaging Syst Technol 31(3):1386–1403

    Article  Google Scholar 

  47. Chauhan D, Yadav A (2023) A competitive and collaborative-based multilevel hierarchical artificial electric field algorithm for global optimization. Inf Sci 648:119535

    Article  Google Scholar 

  48. Dikshit Chauhan and Anupam Yadav (2023) An archive-based self-adaptive artificial electric field algorithm with orthogonal initialization for real-parameter optimization problems. Appl Soft Comput 150:111109

    Google Scholar 

  49. Cao MT, Hoang ND, Nhu VH, Bui DT (2022) An advanced meta-learner based on artificial electric field algorithm optimized stacking ensemble techniques for enhancing prediction accuracy of soil shear strength. Eng Comput 38(3):2185–207

    Article  Google Scholar 

  50. Seyyedabbasi A (2022) Woascalf: a new hybrid whale optimization algorithm based on sine cosine algorithm and levy flight to solve global optimization problems. Adv Eng Softw 173:103272

    Article  Google Scholar 

  51. Pellerin R, Perrier N, Berthaut F (2020) A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. Eur J Oper Res 280(2):395–416

    Article  MathSciNet  Google Scholar 

  52. Niroomand S (2021) Hybrid artificial electric field algorithm for assembly line balancing problem with equipment model selection possibility. Knowl-Based Syst 219:106905

    Article  Google Scholar 

  53. Zheng H, Gao J, Xiong J, Yao G, Cui H, Zhang L (2022) An enhanced artificial electric field algorithm with sine cosine mechanism for logistics distribution vehicle routing. Appl Sci 12(12):6240

    Article  CAS  Google Scholar 

  54. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  55. Naga Sai Kalyan CH, Sambasiva Rao G (2022) Combined frequency and voltage stabilisation of multi-area multisource system by de-aefa optimised pid controller with coordinated performance of ipfc and rfbs. Int J Ambient Energy 43(1):3815–3831

    Article  Google Scholar 

  56. Chauhan D, Yadav A (2022) A hybrid of artificial electric field algorithm and differential evolution for continuous optimization problems. In: Proceedings of 7th International Conference on Harmony Search, Soft Computing and Applications: ICHSA 2022, pp 507–520. Springer

  57. Adegboye OR, Ülker ED (2023) Hybrid artificial electric field employing cuckoo search algorithm with refraction learning for engineering optimization problems. Sci Rep 13(1):4098

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  59. Long W, Tiebin W, Jiao J, Tang M, Ming X (2020) Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of pv model. Eng Appl Artif Intell 89:103457

    Article  Google Scholar 

  60. Malisetti N, Pamula VK (2022) Energy efficient cluster based routing for wireless sensor networks using moth levy adopted artificial electric field algorithm and customized grey wolf optimization algorithm. Microprocess Microsyst 93:104593

    Article  Google Scholar 

  61. Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput 10(2):151–164

    Article  Google Scholar 

  62. Alanazi M, Alanazi A, Memon ZA, Csaba M, Mosavi A (2022) Hill climbing artificial electric field algorithm for maximum power point tracking of photovoltaics. Front Energy Res 10:905310

    Article  Google Scholar 

  63. Villarrubia G, De Paz JF, Chamoso P, De la Prieta F (2018) Artificial neural networks used in optimization problems. Neurocomputing 272:10–16

    Article  Google Scholar 

  64. Xue Yu, Tong Y, Neri F (2022) An ensemble of differential evolution and Adam for training feed-forward neural networks. Inf Sci 608:453–471

    Article  Google Scholar 

  65. Nayak SC, Nayak SK, Dash A (2021) Extreme learning with artifical electric field algorithm (el-aefa) for estimation of short-term vehicular traffic system. In: 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1–4. IEEE

  66. Nayak SC, Sanjeev Kumar Dash C, Behera AK, Dehuri S (2022) An elitist artificial-electric-field-algorithm-based artificial neural network for financial time series forecasting. In: Biologically Inspired Techniques in Many Criteria Decision Making: Proceedings of BITMDM 2021, pp 29–38. Springer

  67. Nayak SC, Das S, Sahoo B, Satyanarayana B (2023) Aefa-ann: Artificial electric field algorithm-based artificial neural networks for forecasting crude oil prices. In: Embracing Machines and Humanity Through Cognitive Computing and IoT, pp 87–94. Springer

  68. Nayak SC, Sanjeev Kumar Dash C, Behera AK, Dehuri S (2022) An artificial electric field algorithm and artificial neural network-based hybrid model for software reliability prediction. In: Computational Intelligence in Data Mining: Proceedings of ICCIDM 2021, pp 271–279. Springer

  69. Nayak SC, Das S, Dehuri S, Cho SB (2023) An elitist artificial electric field algorithm based random vector functional link network for cryptocurrency prices forecasting. IEEE Access

  70. Das S, Nayak SC, Sahoo B (2022) Modeling and forecasting stock closing prices with hybrid functional link artificial neural network. In: Computational Intelligence in Data Mining: Proceedings of ICCIDM 2021, pp 249–259. Springer

  71. Izci D, Ekinci S, Orenc S, Demirören A (2020) Improved artificial electric field algorithm using nelder-mead simplex method for optimization problems. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp 1–5

  72. Alanazi A, Alanazi M (2022) Artificial electric field algorithm-pattern search for many-criteria networks reconfiguration considering power quality and energy not supplied. Energies 15(14):5269

    Article  Google Scholar 

  73. Das H, Naik B, Behera HS (2021) Optimal selection of features using artificial electric field algorithm for classification. Arab J Sci Eng 46(9):8355–8369

    Article  Google Scholar 

  74. Chauhan D, Yadav A (2022) Binary artificial electric field algorithm. Evol Intell 16:1–29

    CAS  Google Scholar 

  75. Chauhan D, Yadav A (2022) Xor-based binary aefa: theoretical studies and applications. In: 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1706–1713

  76. Anita, Yadav A (2020) Discrete artificial electric field algorithm for high-order graph matching. Appl Soft Comput 92:106260

    Article  Google Scholar 

  77. Duchenne O, Bach F, Kweon I-S, Ponce J (2011) A tensor-based algorithm for high-order graph matching. IEEE Trans Pattern Anal Mach Intell 33(12):2383–2395

    Article  PubMed  Google Scholar 

  78. Anita AY, Kumar N, Kim JH (2020) Development of discrete artificial electric field algorithm for quadratic assignment problems. In: Proceedings of 6th International Conference on Harmony Search, Soft Computing and Applications: ICHSA 2020, Istanbul, Volume 1275, pp 411. Springer

  79. Yu Y, Zhou Y, Luo Q, Wei X (2022) Discrete artificial electric field optimization algorithm for graph coloring problem. In: International Conference on Intelligent Computing, pp 6–890. Springer

  80. Bi J, Zhou Y, Tang Z, Luo Q (2022) Artificial electric field algorithm with inertia and repulsion for spherical minimum spanning tree. Appl Intell, 1–20

  81. Bi J, Zhou G, Zhou Y, Luo Q, Deng W (2022) Artificial electric field algorithm with greedy state transition strategy for spherical multiple traveling salesmen problem. Int J Comput Intell Syst 15(1):5

    Article  Google Scholar 

  82. Zhou X, Yang C, Gui W (2011) Initial version of state transition algorithm. In: 2011 Second International Conference on Digital Manufacturing & Automation, pp 644–647. IEEE

  83. Wu G, Mallipeddi R, Suganthan PN (2017) Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report

  84. Anita, Yadav A, Nitin K (2020) Artificial electric field algorithm for engineering optimization problems. Expert Syst Appl 149:113308

    Article  Google Scholar 

  85. Yadav A, Deep K (2016) A shrinking hypersphere pso for engineering optimisation problems. J Exp Theor Artif Intell 28(1–2):1–33

    Article  Google Scholar 

  86. Kalyanmoy D, Karthik S, Jussi H (2016) Multi-objective optimization. Decision sciences. CRC Pres, Boca Raton, pp 161–200

    Google Scholar 

  87. Coello CAC (2007) Evolutionary algorithms for solving multi-objective problems. Springer, London

    Google Scholar 

  88. Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2016) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21(3):440–462

    Google Scholar 

  89. Tian Y, Si L, Zhang X, Cheng R, He C, Tan KC, Jin Y (2021) Evolutionary large-scale multi-objective optimization: a survey. ACM Comput Surv 54(8):1–34

    Google Scholar 

  90. Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl-Based Syst 150:175–197

    Article  Google Scholar 

  91. Soleimanian Gharehchopogh F, Gholizadeh H (2019) A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol Comput 48:1–24

    Article  Google Scholar 

  92. Zhou A, Bo-Yang Q, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  93. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  94. Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52

    Article  Google Scholar 

  95. Zitzler E, Laumanns M, Thiele L (2001) Spea2: Improving the strength pareto evolutionary algorithm. TIK Report, 103

  96. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  97. Li M, Yang S, Liu X (2013) Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput 18(3):348–365

    Article  Google Scholar 

  98. Bosman PAN, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188

    Article  Google Scholar 

  99. Liu Z-Z, Wang Y, Huang P-Q (2020) And: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation. Inf Sci 509:400–419

    Article  MathSciNet  Google Scholar 

  100. Petwal H, Rani R (2020) An improved artificial electric field algorithm for multi-objective optimization. Processes 8(5):584

    Article  Google Scholar 

  101. Thakur M, Meghwani SS, Jalota H (2014) A modified real coded genetic algorithm for constrained optimization. Appl Math Comput 235:292–317

    MathSciNet  Google Scholar 

  102. Zeng G-Q, Chen J, Li L-M, Chen M-R, Lie W, Dai Y-X, Zheng C-W (2016) An improved multi-objective population-based extremal optimization algorithm with polynomial mutation. Inf Sci 330:49–73

    Article  Google Scholar 

  103. Sharma A, Jain SK (2021) Day-ahead optimal reactive power ancillary service procurement under dynamic multi-objective framework in wind integrated deregulated power system. Energy 223:120028

    Article  Google Scholar 

  104. Nobahari H, Nikusokhan M, Siarry P (2012) A multi-objective gravitational search algorithm based on non-dominated sorting. Int J Swarm Intell Res 3(3):32–49

    Article  Google Scholar 

  105. Akanksha S, Jain Sanjay K (2023) Day-ahead multi-objective procurement of voltage control ancillary service in dynamic wind-solar incorporated deregulated power system. Electr Eng 105:1–16

    Google Scholar 

  106. Naderipour A, Abdul-Malek Z, Mustafa MWB, Guerrero JM (2021) A multi-objective artificial electric field optimization algorithm for allocation of wind turbines in distribution systems. Appl Soft Comput 105:107278

    Article  Google Scholar 

  107. Panda S (2009) Multi-objective evolutionary algorithm for sssc-based controller design. Electric Power Syst Res 79(6):937–944

    Article  MathSciNet  Google Scholar 

  108. Shafik MB, Rashed GI, Chen H (2020) Optimizing energy savings and operation of active distribution networks utilizing hybrid energy resources and soft open points: Case study in sohag, egypt. IEEE Access 8:28704–28717

    Article  Google Scholar 

  109. Sajwan A, Yadav A (2022) A study of exploratory and stability analysis of artificial electric field algorithm. Appl Intell 52(9):10805–10828

    Article  Google Scholar 

  110. Dikshit C, Anupam Y (2023) Stability and agent dynamics of artificial electric field algorithm. J Supercomput 80:835–864

    Google Scholar 

  111. Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255

    Article  Google Scholar 

  112. Khare V, Nema S, Baredar P (2016) Solar-wind hybrid renewable energy system: a review. Renew Sustain Energy Rev 58:23–33

    Article  Google Scholar 

  113. Kamyab H, Naderipour A, Jahannoush M, Abdullah A, Marzbali MH (2022) Potential effect of sars-cov-2 on solar energy generation: environmental dynamics and implications. Sustain Energy Technol Assess 52:102027

    Google Scholar 

  114. Naderipour A, Kamyab H, Klemeš JJ, Ebrahimi R, Chelliapan S, Nowdeh SA, Abdullah A, Marzbali MH (2022) Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission. Energy 257:124679

    Article  Google Scholar 

  115. Pati S, Verma OP (2022) Energy integration of solar assisted multiple stage evaporator and optimum parameter selection. Energy 239:122162

    Article  Google Scholar 

  116. Patty S, Rani N, Chaurasia G, Das P, Malakar T (2022) Optimum energy dispatch schedule of distributed energy resources in micro-grid using artificial electric field algorithm. In: 2022 IEEE 10th Power India International Conference (PIICON), pp 1–6. IEEE

  117. Anita, Yadav A, Kumar N (2021) Application of artificial electric field algorithm for economic load dispatch problem. In: Proceedings of the 11th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2019) 11, pp 71–79. Springer

  118. Shah K, Soni J, Bhattacharjee K (2023) Artificial electric field algorithm applied to the economic load dispatch problem with valve point loading effect: Aefa applied to eld with vple. Int J Swarm Intell Res 14(1):1–23

    Article  CAS  Google Scholar 

  119. Nguyen BH, Xue B, Zhang M (2020) A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol Comput 54:100663

    Article  Google Scholar 

  120. Dokeroglu T, Deniz A, Kiziloz HE (2022) A comprehensive survey on recent metaheuristics for feature selection. Neurocomputing 494:269–296

    Article  Google Scholar 

  121. Nie Y, Jiang P, Zhang H (2020) A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting. Appl Soft Comput 97:106809

    Article  Google Scholar 

  122. Khalid R, Javaid N (2020) A survey on hyperparameters optimization algorithms of forecasting models in smart grid. Sustain Cit Soc 61:102275

    Article  Google Scholar 

  123. Arya Y (2019) Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy tidf-ii controller. Renew Energy 139:468–482

    Article  Google Scholar 

  124. Naga Sai Kalyan CH, Sambasiva Rao G (2021) Demonstrating the effect of excitation cross coupling and communication time delays on automatic generation control. In: 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), pp 1–6. IEEE

  125. Naga Sai Kalyan CH, Sambasiva Rao G (2021) Performance comparison of various facts devices in combined lfc and avr of multi-area system for simultaneous frequency and voltage stabilization. In: Hybrid Intelligence for Smart Grid Systems, pp 1–25. CRC Press

  126. Kalyan CNS, Rao GS (2022) Coordinated control strategy for simultaneous frequency and voltage stabilisation of the multi-area interconnected system considering communication time delays. Int J Ambient Energy 43(1):5512–5524

    Article  Google Scholar 

  127. Naga Sai Kalyan CH, Srikanth Goud B, Reddy CR, Bajaj M, Sharma NK, Alhelou HH, Siano P, Kamel S (2022) Comparative performance assessment of different energy storage devices in combined lfc and avr analysis of multi-area power system. Energies 15(2):629

    Article  Google Scholar 

  128. Naga Sai Kalyan CH, Sambasiva Rao G (2021) Impact of communication time delays on combined lfc and avr of a multi-area hybrid system with ipfc-rfbs coordinated control strategy. Prot Control Mod Power Syst 6:1–20

    Google Scholar 

  129. Naga Sai Kalyan CH, Sambasiva Rao G (2021) Performance index-based coordinated control strategy for simultaneous frequency and voltage stabilization of multi-area interconnected system. In: Control Applications in Modern Power System: Select Proceedings of EPREC 2020, pp 45–55. Springer

  130. Naga Sai Kalyan CH, Sambasiva Rao G (2021) Stabilizing frequency and voltage in combined lfc and avr system with coordinated performance of smes and tcsc. In: Control Applications in Modern Power System: Select Proceedings of EPREC 2020, pp 65–76. Springer

  131. Naga Sai Kalyan CH, Sambasiva Rao G (2020) Frequency and voltage stabilisation in combined load frequency control and automatic voltage regulation of multiarea system with hybrid generation utilities by ac/dc links. Int J Sustain Energy 39(10):1009–1029

    Article  Google Scholar 

  132. Zhang Z, Li Y (2022) An aefa-based optimum design of fuzzy pid controller for attitude control flywheel with bldc motor. Aerospace 9(12):789

    Article  Google Scholar 

  133. Janjanam L, Saha SK, Kar R, Mandal D (2020) Volterra filter modelling of non-linear system using artificial electric field algorithm assisted kalman filter and its experimental evaluation. ISA transactions,

  134. Abdelsalam AA, Gabbar HA (2019) Shunt capacitors optimal placement in distribution networks using artificial electric field algorithm. In: 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), pp 77–85. IEEE

  135. Moghdani R, Salimifard K, Demir E, Benyettou A (2021) The green vehicle routing problem: a systematic literature review. J Clean Prod 279:123691

    Article  Google Scholar 

  136. Mor A, Speranza MG (2022) Vehicle routing problems over time: a survey. Ann Oper Res 314(1):255–275

    Article  MathSciNet  Google Scholar 

  137. Remil O, Xie Q, Qiaoyun W, Guo Y, Wang J (2019) Intrinsic shape matching via tensor-based optimization. Comput Aided Des 107:64–76

    Article  Google Scholar 

  138. Mukhopadhyay S, Hossain S, Malakar S, Cuevas E, Sarkar R (2023) Image contrast improvement through a metaheuristic scheme. Soft Comput 27(18):13657–76

    Article  Google Scholar 

  139. Shivhare SN, Kumar N (2021) Tumor bagging: a novel framework for brain tumor segmentation using metaheuristic optimization algorithms. Multimed Tools Appl 80(17):26969–26995

    Article  Google Scholar 

  140. Chauhan D, Yadav A (2023) A crossover-based optimization algorithm for multilevel image segmentation. Soft Comput pp 1–33

  141. Selem SI, El-Fergany AA, Hasanien HM (2021) Artificial electric field algorithm to extract nine parameters of triple-diode photovoltaic model. Int J Energy Res 45(1):590–604

    Article  Google Scholar 

  142. Petwal H, Rani R (2021) An optimized framework for surgical team selection. Comput Mater Continua 69(2):1

    Google Scholar 

  143. Shuoxue SUN, Yuwen SUN, Jinting XU (2023) Tool path generation for 5-axis flank milling of ruled surfaces with optimal cutter locations considering multiple geometric constraints. Chin J Aeronaut 36(12):408–424

    Article  Google Scholar 

  144. Manzoor A, Nabi MY et al (2022) Artificial electric field algorithm based superconducting magnetic energy storage system for damping inter area oscillations. In: IOP Conference Series: Materials Science and Engineering, vol 1228, p 012022. IOP Publishing

  145. Abdelsalam AA, Abdelaziz AY (2020) Minimizing the cost of wide area monitoring systems by optimal allocation of pmus and their communication infrastructure. Arab J Sci Eng 45:6453–6466

    Article  Google Scholar 

  146. Abdelsalam AA, Gabbar HA (2021) Energy saving and management of water pumping networks. Heliyon 7(8):e07820

    Article  PubMed  PubMed Central  Google Scholar 

  147. Nayak SC, Dash CS, Behera AK, Mishra BB (2021) A machine learning approach for estimating compressive strength of concrete structures using an artificial electric field algorithm-based neuro-fuzzy predictor. In: 2021 19th OITS International Conference on Information Technology (OCIT), pp 229–233. IEEE

  148. Yadav A et al (2021) An intelligent model for the detection of white blood cells using artificial intelligence. Comput Methods Programs Biomed 199:105893

    Article  PubMed  Google Scholar 

  149. Al-Khraisat B, AL-Dmour AS, Al-Maitah K (2021) Artificial electric field algorithm for optimum pmu placement. In: 2021 IEEE Green Energy and Smart Systems Conference (IGESSC), pp 1–6. IEEE

  150. Janjanam L, Saha SK, Kar R, Mandal D (2022) Volterra filter modelling of non-linear system using artificial electric field algorithm assisted kalman filter and its experimental evaluation. ISA Trans 125:614–630

    Article  CAS  PubMed  Google Scholar 

  151. Dileep GJRE (2020) A survey on smart grid technologies and applications. Renew Energy 146:2589–2625

    Article  Google Scholar 

  152. Andrade AR, Vogado LHS, Veras RMS, Silva RRV, Araujo FHD, Medeiros FNS (2019) Recent computational methods for white blood cell nuclei segmentation: a comparative study. Comput Methods Programs Biomed 173:1–14

    Article  PubMed  Google Scholar 

  153. Kumar Abhishek, Price Kenneth V, Suganthan Ponnuthurai N, Mohamed Ali Wagdy, Handi Anas A. Problem definitions and evaluation criteria for the cec 2022 special session and competition on single objective bound constrained numerical optimization. Technical Report

  154. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  155. Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–911

    MathSciNet  Google Scholar 

  156. Gong W, Cai Z, Wang Y (2014) Repairing the crossover rate in adaptive differential evolution. Appl Soft Comput 15:149–168

    Article  Google Scholar 

  157. Wang Y, Li H-X, Huang T, Li L (2014) Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl Soft Comput 18:232–247

    Article  Google Scholar 

  158. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE congress on evolutionary computation, pp 71–78. IEEE

  159. Nikolaus H, Müller Sibylle D, Petros K (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evol Comput 11(1):1–18

    Article  Google Scholar 

  160. Tsafarakis S, Zervoudakis K, Andronikidis A, Altsitsiadis E (2020) Fuzzy self-tuning differential evolution for optimal product line design. Eur J Oper Res 287(3):1161–1169

    Article  MathSciNet  Google Scholar 

  161. Tayarani-N MH, Akbarzadeh-T MR (2008) Magnetic optimization algorithms a new synthesis. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp 2659–2664. IEEE

  162. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289

    Article  Google Scholar 

  163. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  164. Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4(4):337–352

    Article  Google Scholar 

  165. Xue Y, Lu C, Neri F, Qin J (2023) Improved differentiable architecture search with multi-stage progressive partial channel connections. IEEE Transactions on Emerging Topics in Computational Intelligence

  166. Jiang P, Xue Yu, Neri F (2023) Continuously evolving dropout with multi-objective evolutionary optimisation. Eng Appl Artif Intell 124:106504

    Article  Google Scholar 

  167. Jiang P, Xue Yu, Neri F (2023) Convolutional neural network pruning based on multi-objective feature map selection for image classification. Appl Soft Comput 139:110229

    Article  Google Scholar 

  168. Xue Yu, Yiling T, Ferrante N (2023) A hybrid training algorithm based on gradient descent and evolutionary computation. Appl Intell 53:21465–21482

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Dr B. R. Ambedkar National Institute of Technology Jalandhar and Science and Engineering Research Board (SERB) (Grant Number: MTR/2021/000503), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Yadav.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, D., Yadav, A. A Comprehensive Survey on Artificial Electric Field Algorithm: Theories and Applications. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-023-10058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-023-10058-3

Navigation