Skip to main content
Log in

Advances in Modeling and Control of Magnetorheological Elastomers for Engineering Applications

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Magnetorheological elastomers (MREs), as smart materials, exhibit notable changes in their mechanical properties in response to an external magnetic field, which makes them ideal candidates for vibration-damping applications across engineering applications. This article delves into the complexities of MRE behavior, discussing in detail the various modeling approaches developed to capture this behavior and the control algorithms designed to exploit MRE properties for real-world applications optimally. These methods include microscopic models that consider the magnetizable particles with potential as magnetic poles, enabling a more in-depth view of localized magnetic interaction. Additionally, continuum-based models are discussed, offering insight into the interplay of local magnetic and mechanical fields within MREs; however, at the macroscopic scale, models that capture the dynamic behavior of MREs are reviewed. Macroscopic models are critical for designing control strategies in MRE-based systems, as they can represent how the material responds under varying magnetic fields and mechanical loads. The paper also introduces the reader to non-parametric models, primarily machine learning approaches. These data-driven methods provide an alternative for understanding and predicting MRE behavior without the necessity for explicit mathematical models. A significant part of the review addresses the difficulties encountered in control design due to the inherent non-linearity of MRE-based systems. These challenges often stem from the complex magnetic-mechanical coupling and hysteresis inherent in MREs, which render traditional linear control techniques ineffective. The article reviews conventional methods while suggesting alternative strategies for real-time adaptability, a critical requirement in applications like adaptive vibration control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Jolly MR, Carlson JD, Muñoz BC, Bullions TA (1996) The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J Intell Mater Syst Struct 7:613–622. https://doi.org/10.1177/1045389X9600700601

    Article  Google Scholar 

  2. Böse H (2007) Viscoelastic properties of silicone-based magnetorheological elastomers. Int J Mod Phys B 21:4790–4797. https://doi.org/10.1142/S0217979207045670

    Article  Google Scholar 

  3. Ginder JM, Clark SM, Schlotter WF, Nichols ME (2002) Magnetostrictive phenomena in magnetorheological elastomers. Int J Mod Phys B 16:2412–2418. https://doi.org/10.1142/S021797920201244X

    Article  Google Scholar 

  4. Demchuk SA, Kuzmin VA (2002) Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation. J Eng Phys Thermophys 75:396–400. https://doi.org/10.1023/A:1015697723112

    Article  Google Scholar 

  5. Kumar JS, Paul PS, Raghunathan G, Alex DG (2019) A review of challenges and solutions in the preparation and use of magnetorheological fluids. Int J Mech Mater Eng 14:1–18. https://doi.org/10.1186/s40712-019-0109-2

    Article  Google Scholar 

  6. Kang SS, Choi K, Do NJ, Choi HJ (2020) Magnetorheological elastomers: fabrication, characteristics, and applications. Materials 13:4597. https://doi.org/10.3390/MA13204597

    Article  Google Scholar 

  7. Zhou GY (2003) Shear properties of a magnetorheological elastomer. Smart Mater Struct 12:139–146. https://doi.org/10.1088/0964-1726/12/1/316

    Article  Google Scholar 

  8. Jolly MR, Carlson JD (2000) Composites with field-responsive rheology. Compr Compos Mater 5:575–589. https://doi.org/10.1016/B0-08-042993-9/00149-2

    Article  Google Scholar 

  9. Jaafar MF, Mustapha F, Mustapha M (2021) Review of current research progress related to magnetorheological elastomer material. J Mark Res 15:5010–5045. https://doi.org/10.1016/j.jmrt.2021.10.058

    Article  Google Scholar 

  10. Bastola AK, Hossain M (2020) A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos B Eng 200:108348. https://doi.org/10.1016/J.COMPOSITESB.2020.108348

    Article  Google Scholar 

  11. Samal S, Škodová M, Abate L, Blanco I (2020) Magneto-rheological elastomer composites: a review. Appl Sci 10:4899. https://doi.org/10.3390/APP10144899

    Article  Google Scholar 

  12. Zhao L, Yu M, Fu J et al (2017) A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment: design and verification. Smart Mater Struct 26:047001. https://doi.org/10.1088/1361-665X/AA5D97

    Article  Google Scholar 

  13. Bastola AK, Hossain M (2021) The shape—morphing performance of magnetoactive soft materials. Mater Des 211:110172. https://doi.org/10.1016/J.MATDES.2021.110172

    Article  Google Scholar 

  14. Pelteret JP, Steinmann P (2020) Magneto-active polymers: fabrication, characterisation, modelling and simulation at the micro- and macro-scale. De Gruyter, Berlin

    Google Scholar 

  15. Farshad M, Benine A (2004) Magnetoactive elastomer composites. Polym Test 23:347–353. https://doi.org/10.1016/S0142-9418(03)00103-X

    Article  Google Scholar 

  16. Walter B, Saxena P, Kaschta J et al (2014) Magneto-sensitive elastomers: an experimental point of view. Proc Appl Math Mech 14:403–404. https://doi.org/10.1002/PAMM.201410189

    Article  Google Scholar 

  17. Ivaneyko D, Toshchevikov V, Saphiannikova M, Heinrich G (2014) Mechanical properties of magneto-sensitive elastomers: unification of the continuum-mechanics and microscopic theoretical approaches. Soft Matter 10:2213–2225. https://doi.org/10.1039/C3SM52440J

    Article  Google Scholar 

  18. The Lens—Free & Open Patent and Scholarly Search. https://www.lens.org/

  19. Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22:245–251. https://doi.org/10.1016/S0142-9418(02)00043-0

    Article  Google Scholar 

  20. Ahmad Khairi MH, Mazlan SA, Ubaidillah et al (2019) Role of additives in enhancing the rheological properties of magnetorheological solids: a review. Adv Eng Mater 21:1–13. https://doi.org/10.1002/adem.201800696

    Article  Google Scholar 

  21. Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687. https://doi.org/10.1016/S0079-6700(01)00040-5

    Article  Google Scholar 

  22. Khairi MHA, Fatah AYA, Mazlan SA et al (2019) Enhancement of particle alignment using silicone oil plasticizer and its effects on the field-dependent properties of magnetorheological elastomers. Int J Mol Sci 20:4085. https://doi.org/10.3390/IJMS20174085

    Article  Google Scholar 

  23. Sapouna K, Xiong YP, Shenoi RA (2017) Dynamic mechanical properties of isotropic/anisotropic silicon magnetorheological elastomer composites. Smart Mater Struct 26:115010

    Article  Google Scholar 

  24. Stepanov GV, Abramchuk SS, Grishin DA et al (2007) Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer (Guildf) 48:488–495. https://doi.org/10.1016/J.POLYMER.2006.11.044

    Article  Google Scholar 

  25. Yao J, Sun Y, Wang Y et al (2018) Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix. Compos Sci Technol 162:170–179. https://doi.org/10.1016/J.COMPSCITECH.2018.04.036

    Article  Google Scholar 

  26. Liyana Burhannuddin N, Azmah Nordin N, Mazlan SA et al (2021) Physicochemical characterization and rheological properties of magnetic elastomers containing different shapes of corroded carbonyl iron particles. Sci Rep 11:868. https://doi.org/10.1038/s41598-020-80539-z

    Article  Google Scholar 

  27. Hapipi N, Aziz SAA, Mazlan SA et al (2019) The field-dependent rheological properties of plate-like carbonyl iron particle-based magnetorheological elastomers. Results Phys 12:2146–2154. https://doi.org/10.1016/J.RINP.2019.02.045

    Article  Google Scholar 

  28. Kaleta J, Królewicz M, Lewandowski D (2011) Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices. Smart Mater Struct 20:085006. https://doi.org/10.1088/0964-1726/20/8/085006

    Article  Google Scholar 

  29. Chen L, Gong XL, Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test 27:340–345. https://doi.org/10.1016/j.polymertesting.2007.12.003

    Article  Google Scholar 

  30. Li S, Liang Y, Li Y et al (2015) Equi-biaxial tension tests on magneto-rheological elastomers. Smart Mater Struct 25:015015. https://doi.org/10.1088/0964-1726/25/1/015015

    Article  Google Scholar 

  31. Kumbhar SR, Maji S, Kumar B (2013) Dynamic mechanical analysis of Magnetorheological Elastomer. In: 2013 international conference on energy efficient technologies for sustainability, ICEETS 2013, pp 870–873. https://doi.org/10.1109/ICEETS.2013.6533500

  32. Han Y, Hong W, Faidley LE (2013) Field-stiffening effect of magneto-rheological elastomers. Int J Solids Struct 50:2281–2288. https://doi.org/10.1016/J.IJSOLSTR.2013.03.030

    Article  Google Scholar 

  33. Jolly MR, Carlson JD, Muñoz BC (1996) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5:607. https://doi.org/10.1088/0964-1726/5/5/009

    Article  Google Scholar 

  34. Biller AM, Stolbov OV, Raikher YL (2014) Modeling of particle interactions in magnetorheological elastomers. J Appl Phys 116:114904. https://doi.org/10.1063/1.4895980

    Article  Google Scholar 

  35. Biller A, Stolbov OV, Biller AM, Raikher YL (2015) Dipolar models of ferromagnet particles interaction in magnetorheological composites stochastic dynamics of interacting dipolar systems. J Optoelectron Adv Mater 17:1106–1113

    Google Scholar 

  36. Cantera MA, Behrooz M, Gibson RF, Gordaninejad F (2017) Modeling of magneto-mechanical response of magnetorheological elastomers (MRE) and MRE-based systems: a review. Smart Mater Struct 26:023001. https://doi.org/10.1088/1361-665X/AA549C

    Article  Google Scholar 

  37. Eldred LB, Baker WP, Palazotto AN (1995) Kelvin–Voigt versus fractional derivative model as constitutive relations for viscoelastic materials. AIAA J 33:547–550. https://doi.org/10.2514/3.12471

    Article  Google Scholar 

  38. Renaud F, Dion JL, Chevallier G et al (2011) A new identification method of viscoelastic behavior: application to the generalized Maxwell model. Mech Syst Signal Process 25:991–1010. https://doi.org/10.1016/J.YMSSP.2010.09.002

    Article  Google Scholar 

  39. Zhang J, Ru J, Chen H et al (2017) Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin–Voigt–Maxwell model. Appl Phys Lett 110:044104. https://doi.org/10.1063/1.4974991

    Article  Google Scholar 

  40. Saharuddin KD, Ariff MHM, Bahiuddin I et al (2022) Non-parametric multiple inputs prediction model for magnetic field dependent complex modulus of magnetorheological elastomer. Sci Rep 12:1–19. https://doi.org/10.1038/s41598-022-06643-4

    Article  Google Scholar 

  41. Choi SB, Li W, Yu M et al (2016) State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater Struct. https://doi.org/10.1088/0964-1726/25/4/043001

    Article  Google Scholar 

  42. Selvaraj R, Ramamoorthy M (2020) Recent developments in semi-active control of magnetorheological materials-based sandwich structures: a review. J Thermoplast Compos Mater 35:2194–2226. https://doi.org/10.1177/0892705720930749

    Article  Google Scholar 

  43. Díez AG, Tubio CR, Etxebarria JG, Lanceros-Mendez S (2021) Magnetorheological elastomer-based materials and devices: state of the art and future perspectives. Adv Eng Mater 23:1–20. https://doi.org/10.1002/adem.202100240

    Article  Google Scholar 

  44. Li W, Tian T, Du H (2012) Sensing and rheological capabilities of MR elastomers. In: Smart actuation and sensing systems—recent advances and future challenges. IntechOpen

  45. Becker TI, Böhm V, Chavez Vega J et al (2019) Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems. Arch Appl Mech 89:133–152. https://doi.org/10.1007/S00419-018-1477-4

    Article  Google Scholar 

  46. Pei P, Peng Y (2022) Constitutive modeling of magnetorheological fluids: a review. J Magn Magn Mater 550:169076. https://doi.org/10.1016/J.JMMM.2022.169076

    Article  Google Scholar 

  47. Oh J-S, Choi S-B (2022) Medical applications of magnetorheological fluids—a review. In: Magnetic materials and technologies for medical applications, pp 485–500. https://doi.org/10.1016/B978-0-12-822532-5.00008-X

  48. Eshgarf H, Ahmadi Nadooshan A, Raisi A (2022) An overview on properties and applications of magnetorheological fluids: dampers, batteries, valves and brakes. J Energy Storage 50:104648. https://doi.org/10.1016/J.EST.2022.104648

    Article  Google Scholar 

  49. Ramkumar G, Jesu Gnanaprakasam A, Thirumarimurugan M et al (2022) Synthesis characterization and functional analysis of magneto rheological fluid—a critical review. Mater Today Proc 66:760–774. https://doi.org/10.1016/J.MATPR.2022.04.104

    Article  Google Scholar 

  50. Li Y, Li J, Li W, Du H (2014) A state-of-the-art review on magnetorheological elastomer devices. Smart Mater Struct 23:123001. https://doi.org/10.1088/0964-1726/23/12/123001

    Article  Google Scholar 

  51. Samal S, Škodová M, Abate L, Blanco I (2020) Magneto-rheological elastomer composites. A Review. Appl Sci 10:4899. https://doi.org/10.3390/APP10144899

    Article  Google Scholar 

  52. Ying Z, Ni Y (2017) Advances in structural vibration control application of magneto-rheological visco-elastomer. Theor Appl Mech Lett 7:61–66. https://doi.org/10.1016/J.TAML.2017.01.003

    Article  Google Scholar 

  53. Ladipo IL, Fadly JD, Faris WF (2016) Characterization of magnetorheological elastomer (MRE) engine mounts. Mater Today Proc 3:411–418. https://doi.org/10.1016/J.MATPR.2016.01.029

    Article  Google Scholar 

  54. Yoon JH, Yang IH, Jeong UC et al (2013) Investigation on variable shear modulus of magnetorheological elastomer based on natural rubber due to change of fabrication design. Polym Eng Sci 53:992–1000. https://doi.org/10.1002/PEN.23349

    Article  Google Scholar 

  55. Dargahi A, Sedaghati R, Rakheja S (2019) On the properties of magnetorheological elastomers in shear mode: design, fabrication and characterization. Compos B Eng 159:269–283. https://doi.org/10.1016/J.COMPOSITESB.2018.09.080

    Article  Google Scholar 

  56. Gordaninejad F, Wang X, Mysore P (2012) Behavior of thick magnetorheological elastomers. J Intell Mater Syst Struct 23:1033–1039. https://doi.org/10.1177/1045389X12448286

    Article  Google Scholar 

  57. Oguro T, Nanpo J, Kikuchi T et al (2017) Effects of field strength and sample size on magnetomechanical response for magnetic elastomers by using permanent magnets. Chem Lett 46:547–549. https://doi.org/10.1246/CL.161182

    Article  Google Scholar 

  58. Burgaz E, Goksuzoglu M (2020) Effects of magnetic particles and carbon black on structure and properties of magnetorheological elastomers. Polym Test 81:106233. https://doi.org/10.1016/J.POLYMERTESTING.2019.106233

    Article  Google Scholar 

  59. Schubert G, Harrison P (2015) Large-strain behaviour of magneto-rheological elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym Test 42:122–134. https://doi.org/10.1016/j.polymertesting.2015.01.008

    Article  Google Scholar 

  60. Yu Y, Li J, Li Y et al (2019) Comparative investigation of phenomenological modeling for hysteresis responses of magnetorheological elastomer devices. Int J Mol Sci 20:3216. https://doi.org/10.3390/ijms20133216

    Article  Google Scholar 

  61. Zhao S, Ma Y, Leng D (2019) An intelligent artificial neural network modeling of a magnetorheological elastomer isolator. Algorithms 12:195. https://doi.org/10.3390/A12090195

    Article  Google Scholar 

  62. Romeis D, Metsch P, Kästner M, Saphiannikova M (2017) Theoretical models for magneto-sensitive elastomers: a comparison between continuum and dipole approaches. Phys Rev E 95:042501. https://doi.org/10.1103/PHYSREVE.95.042501

    Article  Google Scholar 

  63. Rosensweig RE (1998) Directions in ferrohydrodynamics. J Appl Phys 57:4259. https://doi.org/10.1063/1.334579

    Article  Google Scholar 

  64. Shen Y, Golnaraghi MF, Heppler GR (2004) Experimental research and modeling of magnetorheological elastomers. J Intell Mater Syst Struct 15:27–35. https://doi.org/10.1177/1045389X04039264

    Article  Google Scholar 

  65. Coquelle E, Bossis G (2006) Mullins effect in elastomers filled with particles aligned by a magnetic field. Int J Solids Struct 43:7659–7672. https://doi.org/10.1016/J.IJSOLSTR.2006.03.020

    Article  Google Scholar 

  66. Brancati R, Di Massa G, Pagano S (2019) Investigation on the mechanical properties of MRE compounds. Machines 7:36. https://doi.org/10.3390/MACHINES7020036

    Article  Google Scholar 

  67. Yao J, Yang W, Gao Y et al (2019) Magnetorheological elastomers with particle chain orientation: modelling and experiments. Smart Mater Struct 28:095008. https://doi.org/10.1088/1361-665X/AB2E21

    Article  Google Scholar 

  68. Yaremchuk D, Toshchevikov V, Ilnytskyi J, Saphiannikova M (2020) Magnetic energy and a shape factor of magneto-sensitive elastomer beyond the point dipole approximation. J Magn Magn Mater 513:167069. https://doi.org/10.1016/J.JMMM.2020.167069

    Article  Google Scholar 

  69. Cvek M, Kracalik M, Sedlacik M et al (2019) Reprocessing of injection-molded magnetorheological elastomers based on TPE matrix. Compos B Eng 172:253–261. https://doi.org/10.1016/J.COMPOSITESB.2019.05.090

    Article  Google Scholar 

  70. Li R, Zhou M, Wang M, Yang PA (2018) Study on a new self-sensing magnetorheological elastomer bearing. AIP Adv 8:065001. https://doi.org/10.1063/1.5025384

    Article  Google Scholar 

  71. Schümann M, Odenbach S (2017) In-situ observation of the particle microstructure of magnetorheological elastomers in presence of mechanical strain and magnetic fields. J Magn Magn Mater 441:88–92. https://doi.org/10.1016/j.jmmm.2017.05.024

    Article  Google Scholar 

  72. Melenev P, Raikher Y, Stepanov G et al (2011) Modeling of the field-induced plasticity of soft magnetic elastomers. J Intell Mater Syst Struct 22:531–538. https://doi.org/10.1177/1045389X11403819

    Article  Google Scholar 

  73. Yu M, Qi S, Fu J, Zhu M (2017) Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin. Compos Sci Technol 139:36–47. https://doi.org/10.1016/j.compscitech.2016.12.010

    Article  Google Scholar 

  74. Schümann M, Odenbach S (2021) The microstructure of magnetorheological materials characterized by means of computed X-ray microtomography. Phys Sci Rev. https://doi.org/10.1515/psr-2019-0105

    Article  Google Scholar 

  75. Borbáth T, Günther S, Borin DY et al (2012) XμCT analysis of magnetic field-induced phase transitions in magnetorheological elastomers. Smart Mater Struct 21:105018. https://doi.org/10.1088/0964-1726/21/10/105018

    Article  Google Scholar 

  76. Gundermann T, Odenbach S (2014) Investigation of the motion of particles in magnetorheological elastomers by X-μCT. Smart Mater Struct 23:105013. https://doi.org/10.1088/0964-1726/23/10/105013

    Article  Google Scholar 

  77. Davis LC (1999) Model of magnetorheological elastomers. J Appl Phys 85:3348–3351. https://doi.org/10.1063/1.369682

    Article  Google Scholar 

  78. Zhu Y, Gong X, Dang H et al (2006) Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model. Chin J Chem Phys 19:126–130. https://doi.org/10.1360/CJCP2006.19(2).126.5

    Article  Google Scholar 

  79. Yu M, Xia YQ, Yan XR (2009) Analysis and verification on the chain-like model with normal distribution of magnetorheological elastomer. Chin J Chem Phys 22:545–550. https://doi.org/10.1088/1674-0068/22/05/545-550

    Article  Google Scholar 

  80. Zhang W, Gong XL, Chen L (2010) A Gaussian distribution model of anisotropic magnetorheological elastomers. J Magn Magn Mater 322:3797–3801. https://doi.org/10.1016/J.JMMM.2010.08.004

    Article  Google Scholar 

  81. Gao W, Guo Z, Yang Y (2021) Effect of intensity of orientational magnetic field on steady shear behavior of magnetorheological elastomers. AIP Adv 11:055102. https://doi.org/10.1063/5.0044202

    Article  Google Scholar 

  82. Liu T, Xu Y, Liu T, Xu Y (2019) Magnetorheological elastomers: materials and applications. Smart Funct Soft Mater. https://doi.org/10.5772/INTECHOPEN.85083

    Article  Google Scholar 

  83. Ivaneyko D, Toshchevikov VP, Saphiannikova M, Heinrich G (2011) Magneto-sensitive elastomers in a homogeneous magnetic field: a regular rectangular lattice model. Macromol Theory Simul 20:411–424. https://doi.org/10.1002/MATS.201100018

    Article  Google Scholar 

  84. Asadi Khanouki M, Sedaghati R, Hemmatian M (2019) Experimental characterization and microscale modeling of isotropic and anisotropic magnetorheological elastomers. Compos B Eng 176:107311. https://doi.org/10.1016/J.COMPOSITESB.2019.107311

    Article  Google Scholar 

  85. Ivaneyko D, Toshchevikov V, Saphiannikova M, Heinrich G (2012) Effects of particle distribution on mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field. Condens Matter Phys 15:1–12. https://doi.org/10.5488/CMP.15.33601

    Article  Google Scholar 

  86. Galipeau E, Ponte Castañeda P (2012) The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites. Int J Solids Struct 49:1–17. https://doi.org/10.1016/J.IJSOLSTR.2011.08.014

    Article  Google Scholar 

  87. Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50:4197–4216. https://doi.org/10.1016/j.ijsolstr.2013.08.024

    Article  Google Scholar 

  88. Kalina KA, Brummund J, Metsch P et al (2017) Modeling of magnetic hystereses in soft MREs filled with NdFeB particles. Smart Mater Struct 26:105019. https://doi.org/10.1088/1361-665X/AA7F81

    Article  Google Scholar 

  89. Metsch P, Kalina KA, Spieler C, Kästner M (2016) A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput Mater Sci 124:364–374. https://doi.org/10.1016/J.COMMATSCI.2016.08.012

    Article  Google Scholar 

  90. Chatzigeorgiou G, Javili A, Steinmann P (2014) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math Mech Solids 19:193–211. https://doi.org/10.1177/1081286512458109

    Article  MathSciNet  Google Scholar 

  91. Rudykh S, Bertoldi K (2013) Stability of anisotropic magnetorheological elastomers in finite deformations: a micromechanical approach. J Mech Phys Solids 61:949–967. https://doi.org/10.1016/J.JMPS.2012.12.008

    Article  MathSciNet  Google Scholar 

  92. Goshkoderia A, Rudykh S (2017) Stability of magnetoactive composites with periodic microstructures undergoing finite strains in the presence of a magnetic field. Compos B Eng 128:19–29. https://doi.org/10.1016/J.COMPOSITESB.2017.06.014

    Article  Google Scholar 

  93. Dorfmann A, Ogden RW (2005) Some problems in nonlinear magnetoelasticity. Z Angew Math Phys 56:718–745. https://doi.org/10.1007/S00033-004-4066-Z

    Article  MathSciNet  Google Scholar 

  94. Dorfmann A, Ogden RW (2003) Magnetoelastic modelling of elastomers. Eur J Mech A Solids 22:497–507. https://doi.org/10.1016/S0997-7538(03)00067-6

    Article  MathSciNet  Google Scholar 

  95. Ponte Castañeda P, Galipeau E (2011) Homogenization-based constitutive models for magnetorheological elastomers at finite strain. J Mech Phys Solids 59:194–215. https://doi.org/10.1016/J.JMPS.2010.11.004

    Article  MathSciNet  Google Scholar 

  96. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372. https://doi.org/10.1016/0022-5096(63)90036-X

    Article  Google Scholar 

  97. Zabihyan R, Mergheim J, Javili A, Steinmann P (2018) Aspects of computational homogenization in magneto-mechanics: boundary conditions, RVE size and microstructure composition. Int J Solids Struct 130–131:105–121. https://doi.org/10.1016/J.IJSOLSTR.2017.10.009

    Article  Google Scholar 

  98. Lefèvre V, Danas K, Lopez-Pamies O (2017) A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens. J Mech Phys Solids 107:343–364. https://doi.org/10.1016/J.JMPS.2017.06.017

    Article  MathSciNet  Google Scholar 

  99. Kankanala SV, Triantafyllidis N (2004) On finitely strained magnetorheological elastomers. J Mech Phys Solids 52:2869–2908. https://doi.org/10.1016/J.JMPS.2004.04.007

    Article  MathSciNet  Google Scholar 

  100. Mukherjee D, Bodelot L, Danas K (2020) Microstructurally-guided explicit continuum models for isotropic magnetorheological elastomers with iron particles. Int J Non Linear Mech 120:103380. https://doi.org/10.1016/J.IJNONLINMEC.2019.103380

    Article  Google Scholar 

  101. Saxena P, Pelteret JP, Steinmann P (2015) Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure. Eur J Mech A Solids 50:132–151. https://doi.org/10.1016/J.EUROMECHSOL.2014.10.005

    Article  MathSciNet  Google Scholar 

  102. Saxena P, Hossain M, Steinmann P (2014) Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers. Proc R Soc A Math Phys Eng Sci. https://doi.org/10.1098/RSPA.2014.0082

    Article  Google Scholar 

  103. Nedjar B (2020) A modelling framework for finite strain magnetoviscoelasticity. Math Mech Solids 25:288–304. https://doi.org/10.1177/1081286519873963/

    Article  MathSciNet  Google Scholar 

  104. Garcia-Gonzalez D, Hossain M (2021) Microstructural modelling of hard-magnetic soft materials: dipole–dipole interactions versus Zeeman effect. Extreme Mech Lett 48:101382. https://doi.org/10.1016/J.EML.2021.101382

    Article  Google Scholar 

  105. Keip MA, Rambausek M (2016) A multiscale approach to the computational characterization of magnetorheological elastomers. Int J Numer Methods Eng 107:338–360. https://doi.org/10.1002/NME.5178

    Article  MathSciNet  Google Scholar 

  106. Haldar K (2021) Constitutive modeling of magneto-viscoelastic polymers, demagnetization correction, and field-induced Poynting effect. Int J Eng Sci 165:103488. https://doi.org/10.1016/J.IJENGSCI.2021.103488

    Article  MathSciNet  Google Scholar 

  107. Garcia-Gonzalez D, Hossain M (2021) A microstructural-based approach to model magneto-viscoelastic materials at finite strains. Int J Solids Struct 208–209:119–132. https://doi.org/10.1016/J.IJSOLSTR.2020.10.028

    Article  Google Scholar 

  108. Soria-Hernández CG, Palacios-Pineda LM, Elías-Zúñiga A et al (2019) Investigation of the effect of carbonyl iron micro-particles on the mechanical and rheological properties of isotropic and anisotropic MREs: constitutive magneto-mechanical material model. Polymers 11:1705. https://doi.org/10.3390/POLYM11101705

    Article  Google Scholar 

  109. Avazmohammadi R, Ponte Castañeda P (2016) Macroscopic constitutive relations for elastomers reinforced with short aligned fibers: instabilities and post-bifurcation response. J Mech Phys Solids 97:37–67. https://doi.org/10.1016/J.JMPS.2015.07.007

    Article  MathSciNet  Google Scholar 

  110. Galipeau E, Ponte Castañeda P (2013) A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations. J Mech Phys Solids 61:1065–1090. https://doi.org/10.1016/J.JMPS.2012.11.007

    Article  MathSciNet  Google Scholar 

  111. Furer J, Ponte Castañeda P (2022) Homogenization, macroscopic instabilities and domain formation in magnetoactive composites: theory and applications. J Mech Phys Solids 169:105081. https://doi.org/10.1016/J.JMPS.2022.105081

    Article  MathSciNet  Google Scholar 

  112. Bustamante R, Dorfmann A, Ogden RW (2008) On variational formulations in nonlinear magnetoelastostatics. Math Mech Solids 13:725–745. https://doi.org/10.1177/1081286507079832

    Article  MathSciNet  Google Scholar 

  113. Chougale S, Romeis D, Saphiannikova M (2022) Magneto-mechanical enhancement of elastic moduli in magnetoactive elastomers with anisotropic microstructures. Materials 15:645. https://doi.org/10.3390/MA15020645

    Article  Google Scholar 

  114. Yin HM, Sun LZ (2005) Elastic modelling of periodic composites with particle interactions. Philos Mag Lett 85:163–173. https://doi.org/10.1080/09500830500157413

    Article  Google Scholar 

  115. Xia L, Hu Z, Sun L (2022) Multiscale numerical modeling of magneto-hyperelasticity of magnetorheological elastomeric composites. Compos Sci Technol 224:109443. https://doi.org/10.1016/J.COMPSCITECH.2022.109443

    Article  Google Scholar 

  116. Galipeau E, Ponte Castañeda P (2013) A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations. J Mech Phys Solids 4:1065–1090. https://doi.org/10.1016/J.JMPS.2012.11.007

    Article  MathSciNet  Google Scholar 

  117. Xu Z, Wu H, Wang Q et al (2019) Simulation study on the motion of magnetic particles in silicone rubber-based magnetorheological elastomers. Math Probl Eng. https://doi.org/10.1155/2019/8182651

    Article  Google Scholar 

  118. Sun S, Peng X, Guo Z (2014) Study on macroscopic and microscopic mechanical behavior of magnetorheological elastomers by representative volume element approach. Adv Condens Matter Phys. https://doi.org/10.1155/2014/232510

    Article  Google Scholar 

  119. Alexander RL (1965) Viscoelastic models in the physics curriculum. Phys Teach 3:350–353. https://doi.org/10.1119/1.2349207

    Article  Google Scholar 

  120. Rajagopal KR (2009) A note on a reappraisal and generalization of the Kelvin–Voigt model. Mech Res Commun 36:232–235. https://doi.org/10.1016/J.MECHRESCOM.2008.09.005

    Article  Google Scholar 

  121. Bulíček M, Málek J, Rajagopal KR (2012) On Kelvin–Voigt model and its generalizations. Evolut Equ Control Theory 1:17–42. https://doi.org/10.3934/EECT.2012.1.17

    Article  MathSciNet  Google Scholar 

  122. Bonfanti A, Kaplan JL, Charras G, Kabla A (2020) Fractional viscoelastic models for power-law materials. Soft Matter 16:6002. https://doi.org/10.1039/d0sm00354a

    Article  Google Scholar 

  123. Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta 49:733–740. https://doi.org/10.1007/S00397-010-0446-9

    Article  Google Scholar 

  124. Norouzi M, Alehashem SMS, Vatandoost H et al (2015) A new approach for modeling of magnetorheological elastomers. J Intell Mater Syst Struct 27:1121–1135. https://doi.org/10.1177/1045389X15615966

    Article  Google Scholar 

  125. Vatandoost H, Norouzi M, Alehashem SMS, Smoukov SK (2017) A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension–compression mode. Smart Mater Struct 26:065011. https://doi.org/10.1088/1361-665X/AA6126

    Article  Google Scholar 

  126. Xin FL, Bai XX, Qian LJ (2016) Modeling and experimental verification of frequency-, amplitude-, and magneto-dependent viscoelasticity of magnetorheological elastomers. Smart Mater Struct 25:105002. https://doi.org/10.1088/0964-1726/25/10/105002

    Article  Google Scholar 

  127. Qiao Y, Zhang J, Zhang M et al (2021) A magnetic field- and frequency-dependent dynamic shear modulus model for isotropic silicone rubber-based magnetorheological elastomers. Compos Sci Technol. https://doi.org/10.1016/J.COMPSCITECH.2020.108637

    Article  Google Scholar 

  128. Qiao Y, Zhang J, Zhang M et al (2021) Experimental and modeling investigations on the quasi-static compression properties of isotropic silicone rubber-based magnetorheological elastomers under the magnetic fields ranging from zero to saturation field. Smart Mater Struct 31:015029. https://doi.org/10.1088/1361-665X/AC3C06

    Article  Google Scholar 

  129. Kumar B, Das A, Alagirusamy R (2014) Modeling of interface pressure profile generated over time. Sci Compress Bandages. https://doi.org/10.1533/9781782422723.138

    Article  Google Scholar 

  130. Lewandowski D (2019) Modeling of magnetorheological elastomers using the elastic-plastic model with kinematic hardening. Materials. https://doi.org/10.3390/MA12060892

    Article  Google Scholar 

  131. Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago

    Google Scholar 

  132. Chen L, Jerrams S (2011) A rheological model of the dynamic behavior of magnetorheological elastomers. J Appl Phys 110:013513. https://doi.org/10.1063/1.3603052

    Article  Google Scholar 

  133. Eem SH, Jung HJ, Koo JH (2012) Modeling of magneto-rheological elastomers for harmonic shear deformation. IEEE Trans Magn 48:3080–3083. https://doi.org/10.1109/TMAG.2012.2205140

    Article  Google Scholar 

  134. Zhu G, Xiong Y, Li Z et al (2020) A nonlinear dynamic model of magnetorheological elastomers in magnetic fields based on fractional viscoelasticity. J Intell Mater Syst Struct 32:228–239. https://doi.org/10.1177/1045389X20953618

    Article  Google Scholar 

  135. Garcia-Gonzalez D, Moreno MA, Valencia L et al (2021) Influence of elastomeric matrix and particle volume fraction on the mechanical response of magneto-active polymers. Compos B Eng 215:108796. https://doi.org/10.1016/J.COMPOSITESB.2021.108796

    Article  Google Scholar 

  136. Gorman D, Murphy N, Ekins R, Jerrams S (2017) The evaluation of the effect of strain limits on the physical properties of magnetorheological elastomers subjected to uniaxial and biaxial cyclic testing. Int J Fatigue 103:1–4. https://doi.org/10.1016/J.IJFATIGUE.2017.05.011

    Article  Google Scholar 

  137. Zhou Y, Jiang L, Chen S et al (2017) Determination of reliable fatigue life predictors for magnetorheological elastomers under dynamic equi-biaxial loading. Polym Test 61:177–184. https://doi.org/10.1016/j.polymertesting.2017.05.021

    Article  Google Scholar 

  138. Zhou Y, Jerrams S, Betts A et al (2015) The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers. Mater Des 67:398–404. https://doi.org/10.1016/J.MATDES.2014.11.056

    Article  Google Scholar 

  139. Janbaz M, Saeidi Googarchin H (2021) Experimental and numerical analysis on magneto-hyper-viscoelastic constitutive responses of magnetorheological elastomers: a characterization procedure. Mech Mater 154:103712. https://doi.org/10.1016/J.MECHMAT.2020.103712

    Article  Google Scholar 

  140. Kukla M, Warguła Ł, Talaśka K, Wojtkowiak D (2020) Magnetorheological elastomer stress relaxation behaviour during compression: experiment and modelling. Materials 13:4795. https://doi.org/10.3390/MA13214795

    Article  Google Scholar 

  141. Kumar V, Manikkavel A, Alam MN, Park SS (2023) Improved synergistic effects among iron oxide, molybdenum disulfide, and multi-wall carbon nanotubes-based rubber composites for stretchable devices. Polym Bull. https://doi.org/10.1007/S00289-022-04587-3

    Article  Google Scholar 

  142. Nam TH, Petríková I, Marvalová B (2020) Experimental characterization and viscoelastic modeling of isotropic and anisotropic magnetorheological elastomers. Polym Test 81:106272. https://doi.org/10.1016/J.POLYMERTESTING.2019.106272

    Article  Google Scholar 

  143. López-López MT, Kuzhir P, Caballero-Hernández J et al (2012) Yield stress in magnetorheological suspensions near the limit of maximum-packing fraction. J Rheol (N Y N Y) 56:1209. https://doi.org/10.1122/1.4731659

    Article  Google Scholar 

  144. Agirre-Olabide I, Kuzhir P, Elejabarrieta MJ (2018) Linear magneto-viscoelastic model based on magnetic permeability components for anisotropic magnetorheological elastomers. J Magn Magn Mater 446:155–161. https://doi.org/10.1016/J.JMMM.2017.09.017

    Article  Google Scholar 

  145. Zhu J-T, Xu Z-D, Guo Y-Q (2013) Experimental and modeling study on magnetorheological elastomers with different matrices. J Mater Civ Eng 25:1762–1771. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000727

    Article  Google Scholar 

  146. Sasso M, Palmieri G, Amodio D (2011) Application of fractional derivative models in linear viscoelastic problems. Mech Time-Depend Mater 15:367–387. https://doi.org/10.1007/S11043-011-9153-X

    Article  Google Scholar 

  147. Nguyen XB, Komatsuzaki T, Zhang N et al (2020) A nonlinear magnetorheological elastomer model based on fractional viscoelasticity, magnetic dipole interactions, and adaptive smooth Coulomb friction. Mech Syst Signal Process 141:106438. https://doi.org/10.1016/J.YMSSP.2019.106438

    Article  Google Scholar 

  148. Itskov M, Khiêm VN (2015) Constitutive modeling of magneto-and electro-active rubbers by polyconvex free energies. In: Constitutive models for rubber IX—Proceedings of the 9th European conference on constitutive models for rubbers, ECCMR, pp 651–656. https://doi.org/10.1201/B18701-114

  149. Nadzharyan TA, Kostrov SA, Stepanov GV, Kramarenko EY (2018) Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers in magnetic fields. Polymer (Guildf) 142:316–329. https://doi.org/10.1016/J.POLYMER.2018.03.039

    Article  Google Scholar 

  150. Kumbhar SB, Chavan SP, Gawade SS et al (2018) Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mech Syst Signal Process 100:208–223. https://doi.org/10.1016/J.YMSSP.2017.07.027

    Article  Google Scholar 

  151. Poojary UR, Gangadharan KV (2018) Integer and fractional order-based viscoelastic constitutive modeling to predict the frequency and magnetic field-induced properties of magnetorheological elastomer. J Vib Acoust Trans ASME. https://doi.org/10.1115/1.4039242/473422

    Article  Google Scholar 

  152. Zhang W, Shimizu N (1999) Damping properties of the viscoelastic material described by fractional Kelvin–Voigt model. JSME Int J Ser C 42:1–9. https://doi.org/10.1299/JSMEC.42.1

    Article  Google Scholar 

  153. Lewandowski R, Chorazyczewski B (2010) Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput Struct 88:1–17. https://doi.org/10.1016/J.COMPSTRUC.2009.09.001

    Article  Google Scholar 

  154. Zhu J-T, Xu Z-D, Guo Y-Q et al (2012) Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation device. Smart Mater Struct 21:075034. https://doi.org/10.1088/0964-1726/21/7/075034

    Article  Google Scholar 

  155. Guo F, Bin DuC, Li RP (2014) Viscoelastic parameter model of magnetorheological elastomers based on Abel dashpot. Adv Mech Eng. https://doi.org/10.1155/2014/629386

    Article  Google Scholar 

  156. Agirre-Olabide I, Lion A, Elejabarrieta MJ (2017) A new three-dimensional magneto-viscoelastic model for isotropic magnetorheological elastomers. Smart Mater Struct 26:035021. https://doi.org/10.1088/1361-665X/26/3/035021

    Article  Google Scholar 

  157. Yang S, Wang P, Liu Y et al (2021) Modified Bouc–Wen model based on fractional derivative and application in magnetorheological elastomer. Front Mater 8:409. https://doi.org/10.3389/FMATS.2021.743716/BIBTEX

    Article  Google Scholar 

  158. Fan J, Yao J, Yu Y, Li Y (2022) A macroscopic viscoelastic model of magnetorheological elastomer with different initial particle chain orientation angles based on fractional viscoelasticity. Smart Mater Struct 31:025025. https://doi.org/10.1088/1361-665X/AC4575

    Article  Google Scholar 

  159. Hemmatian M, Sedaghati R, Rakheja S (2020) Characterization and modeling of temperature effect on the shear mode properties of magnetorheological elastomers. Smart Mater Struct 29:115001. https://doi.org/10.1088/1361-665X/ABB359

    Article  Google Scholar 

  160. Yang C, Ma W, Zhong J, Zhang Z (2021) Comparative study of machine learning approaches for predicting creep behavior of polyurethane elastomer. Polymers 13:1768. https://doi.org/10.3390/POLYM13111768

    Article  Google Scholar 

  161. Hasan M, Acar P (2022) Machine learning reinforced microstructure-sensitive prediction of material property closures. Comput Mater Sci 210:110930. https://doi.org/10.1016/J.COMMATSCI.2021.110930

    Article  Google Scholar 

  162. Yu Y, Li Y, Li J (2015) Forecasting hysteresis behaviours of magnetorheological elastomer base isolator utilizing a hybrid model based on support vector regression and improved particle swarm optimization. Smart Mater Struct 24:035025. https://doi.org/10.1088/0964-1726/24/3/035025

    Article  Google Scholar 

  163. Yu Y, Li Y, Li J et al (2018) Nonlinear characterization of the MRE isolator using binary-coded discrete CSO and ELM. Int J Struct Stab Dyn 18:8. https://doi.org/10.1142/S0219455418400072

    Article  MathSciNet  Google Scholar 

  164. Leng D, Sun S, Xu K, Liu G (2020) A physical model of magnetorheological elastomer isolator and its dynamic analysis. J Intell Mater Syst Struct 31:1141–1156. https://doi.org/10.1177/1045389X20910272

    Article  Google Scholar 

  165. Yu Y, Li Y, Li J (2015) Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm. J Intell Mater Syst Struct 26:1789–1798. https://doi.org/10.1177/1045389X15577649

    Article  Google Scholar 

  166. Leng D, Xu K, Ma Y et al (2018) Modeling the behaviors of magnetorheological elastomer isolator in shear-compression mixed mode utilizing artificial neural network optimized by fuzzy algorithm (ANNOFA). Smart Mater Struct. https://doi.org/10.1088/1361-665X/AADFA9

    Article  Google Scholar 

  167. Pal R, Kupka K, Aneja AP, Militky J (2016) Business health characterization: a hybrid regression and support vector machine analysis. Expert Syst Appl 49:48–59. https://doi.org/10.1016/j.eswa.2015.11.027

    Article  Google Scholar 

  168. Yin S, Zhu X, Jing C (2014) Fault detection based on a robust one class support vector machine. Neurocomputing 145:263–268. https://doi.org/10.1016/j.neucom.2014.05.035

    Article  Google Scholar 

  169. Yu Y, Li Y, Li J, Gu X (2016) Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator. Neurocomputing 211:41–52. https://doi.org/10.1016/J.NEUCOM.2016.02.074

    Article  Google Scholar 

  170. Bahiuddin I, Wahab NAA, Shapiai MI et al (2019) Prediction of field-dependent rheological properties of magnetorheological grease using extreme learning machine method. J Intell Mater Syst Struct 30:1727–1742. https://doi.org/10.1177/1045389X19844007

    Article  Google Scholar 

  171. Yu Y, Li Y, Li J et al (2019) Dynamic modeling of magnetorheological elastomer base isolator based on extreme learning machine. In: Mechanics of structures and materials: advancements and challenges. CRC Press, pp 732–737

  172. Saharuddin KD, Mohammed Ariff MH, Bahiuddin I et al (2020) Constitutive models for predicting field-dependent viscoelastic behavior of magnetorheological elastomer using machine learning. Smart Mater Struct 29:087001. https://doi.org/10.1088/1361-665X/AB972D

    Article  Google Scholar 

  173. Pelteret JP, Walter B, Steinmann P (2018) Application of metaheuristic algorithms to the identification of nonlinear magneto-viscoelastic constitutive parameters. J Magn Magn Mater 464:116–131. https://doi.org/10.1016/J.JMMM.2018.02.094

    Article  Google Scholar 

  174. Biller AM, Stolbov OV, Raikher YL (2015) Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer. Phys Rev E Stat Nonlinear Soft Matter Phys. https://doi.org/10.1103/PhysRevE.92.023202

    Article  Google Scholar 

  175. Yu Y, Li Y, Li J, Gu X (2016) A hysteresis model for dynamic behaviour of magnetorheological elastomer base isolator. Smart Mater Struct 25:055029. https://doi.org/10.1088/0964-1726/25/5/055029

    Article  Google Scholar 

  176. Sireteanu T, Giuclea M, Mitu AM (2010) Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices. Comput Mech 45:431–441. https://doi.org/10.1007/S00466-009-0451-Y

    Article  Google Scholar 

  177. Eem SH, Koo JH, Jung HJ (2018) Feasibility study of an adaptive mount system based on magnetorheological elastomer using real-time hybrid simulation. J Intell Mater Syst Struct 30:701–707. https://doi.org/10.1177/1045389X18754347

    Article  Google Scholar 

  178. Dargahi A, Rakheja S, Sedaghati R (2019) Development of a field dependent Prandtl–Ishlinskii model for magnetorheological elastomers. Mater Des 166:107608. https://doi.org/10.1016/J.MATDES.2019.107608

    Article  Google Scholar 

  179. Li Y, Li J, Li W, Samali B (2013) Development and characterization of a magnetorheological elastomer based adaptive seismic isolator. Smart Mater Struct 22:035005. https://doi.org/10.1088/0964-1726/22/3/035005

    Article  Google Scholar 

  180. Yang J, Du H, Li W et al (2013) Experimental study and modeling of a novel magnetorheological elastomer isolator. Smart Mater Struct 22:117001. https://doi.org/10.1088/0964-1726/22/11/117001

    Article  Google Scholar 

  181. Behrooz M, Wang X, Gordaninejad F (2014) Modeling of a new semi-active/passive magnetorheological elastomer isolator. Smart Mater Strcut 23:045013. https://doi.org/10.1088/0964-1726/23/4/045013

    Article  Google Scholar 

  182. Behrooz M, Wang X, Gordaninejad F (2014) Performance of a new magnetorheological elastomer isolation system. Smart Mater Struct 23:045014. https://doi.org/10.1088/0964-1726/23/4/045014

    Article  Google Scholar 

  183. Brancati R, Di Massa G, Pagano S, Santini S (2019) A magneto-rheological elastomer vibration isolator for lightweight structures. Meccanica 54:333–349. https://doi.org/10.1007/S11012-019-00951-2/FIGURES/34

    Article  Google Scholar 

  184. Yu Y, Li Y, Li J (2014) Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization. J Intell Mater Syst Struct 26:2446–2462. https://doi.org/10.1177/1045389X14556166

    Article  Google Scholar 

  185. Dong R, Tan Y (2009) A modified Prandtl–Ishlinskii modeling method for hysteresis. Phys B Condens Matter 404:1336–1342. https://doi.org/10.1016/j.physb.2008.12.024

    Article  Google Scholar 

  186. OPUS at UTS: parameter identification of an improved Dahl model for magnetorheological elastomer base isolator based on enhanced genetic algorithm. Open Publications of UTS Scholars. https://opus.lib.uts.edu.au/handle/10453/34528. Accessed 23 July 2022

  187. Yu Y, Li Y, Li J (2015) Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Meccanica 50:2691–2707. https://doi.org/10.1007/S11012-015-0179-Z

    Article  Google Scholar 

  188. Jiménez R, Álvarez-Icaza L (2005) LuGre friction model for a magnetorheological damper. Struct Control Health Monit 12:91–116. https://doi.org/10.1002/STC.58

    Article  Google Scholar 

  189. Wu C, Cheng C, El-Aty AA et al (2020) Influence of particles size and concentration of carbonyl iron powder on magnetorheological properties of silicone rubber-based magnetorheological elastomer. Mater Res Express 7:086101. https://doi.org/10.1088/2053-1591/ABAF8A

    Article  Google Scholar 

  190. Xu ZD, Liao YX, Ge T, Xu C (2016) Experimental and theoretical study of viscoelastic dampers with different matrix rubbers. J Eng Mech 142:04016051. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001101

    Article  Google Scholar 

  191. Bica I, Bunoiu OM (2019) Magnetorheological hybrid elastomers based on silicone rubber and magnetorheological suspensions with graphene nanoparticles: effects of the magnetic field on the relative dielectric permittivity and electric conductivity. Int J Mol Sci 20:4201. https://doi.org/10.3390/IJMS20174201

    Article  Google Scholar 

  192. Sun S, Yang J, Li W et al (2015) Development of an MRE adaptive tuned vibration absorber with self-sensing capability. Smart Mater Struct 24:095012. https://doi.org/10.1088/0964-1726/24/9/095012

    Article  Google Scholar 

  193. Liao GJ, Gong XL, Xuan SH et al (2011) Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J Intell Mater Syst Struct 23:25–33. https://doi.org/10.1177/1045389X11429853

    Article  Google Scholar 

  194. Li Y, Li J, Tian T, Li W (2013) A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater Struct 22:095020. https://doi.org/10.1088/0964-1726/22/9/095020

    Article  Google Scholar 

  195. Yang J, Sun SS, Du H et al (2014) A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction. Smart Mater Struct 23:105023. https://doi.org/10.1088/0964-1726/23/10/105023

    Article  Google Scholar 

  196. Yang J, Sun SS, Chi JY et al (2018) Development and evaluation of an MRE-based absorber with two individually controllable natural frequencies. Smart Mater Struct 27:095002. https://doi.org/10.1088/1361-665X/AACBB0

    Article  Google Scholar 

  197. Liu C, Sedaghati R, Shang P (2021) A novel semi-active switching control scheme for magnetorheological elastomer-based vibration isolator under dynamic input saturation. Smart Mater Struct 30:095008. https://doi.org/10.1088/1361-665X/AC1578

    Article  Google Scholar 

  198. Zhao J, Gao Z, Li H et al (2022) Semi-active control for the nonlinear vibration suppression of square-celled sandwich plate with multi-zone MRE filler core. Mech Syst Signal Process 172:108953. https://doi.org/10.1016/J.YMSSP.2022.108953

    Article  Google Scholar 

  199. Gu X, Yu Y, Li J, Li Y (2017) Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model. J Sound Vib 406:346–362. https://doi.org/10.1016/J.JSV.2017.06.023

    Article  Google Scholar 

  200. Jin S, Sun S, Yang J et al (2021) A hybrid MRE isolation system integrated with ball-screw inerter for vibration control. Smart Mater Struct 31:025009. https://doi.org/10.1088/1361-665X/AC3EED

    Article  Google Scholar 

  201. Fu J, Li P, Wang Y et al (2016) Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation. Smart Mater Struct 25:035030. https://doi.org/10.1088/0964-1726/25/3/035030

    Article  Google Scholar 

  202. Fu J, Bai J, Lai J et al (2019) Adaptive fuzzy control of a magnetorheological elastomer vibration isolation system with time-varying sinusoidal excitations. J Sound Vib 456:386–406. https://doi.org/10.1016/J.JSV.2019.05.046

    Article  Google Scholar 

  203. Nguyen XB, Komatsuzaki T, Iwata Y, Asanuma H (2017) Fuzzy semiactive vibration control of structures using magnetorheological elastomer. Shock Vib. https://doi.org/10.1155/2017/3651057

    Article  Google Scholar 

  204. Fu J, Lai J, Yang Z et al (2020) Fuzzy-neural network control for a magnetorheological elastomer vibration isolation system. Smart Mater Struct 29:074001. https://doi.org/10.1088/1361-665X/AB874D

    Article  Google Scholar 

  205. Fu J, Liu J, Lai J et al (2023) Robustness analysis of magnetorheological elastomer-based vibration isolation system with optimal fuzzy controller. Smart Mater Struct. https://doi.org/10.1088/1361-665X/ACB577

    Article  Google Scholar 

  206. Kiran K, Poojary UR, Gangadharan KV (2022) Developing the viscoelastic model and model-based fuzzy controller for the MRE isolator for the wide frequency range vibration isolation. J Braz Soc Mech Sci Eng 44:1–20. https://doi.org/10.1007/S40430-022-03575-Y/FIGURES/16

    Article  Google Scholar 

  207. Kumar J, Bhushan G (2022) Dynamic analysis of quarter car model with semi-active suspension based on combination of magneto-rheological materials. Int J Dyn Control. https://doi.org/10.1007/S40435-022-01024-1

    Article  Google Scholar 

  208. Guo YQ, Zhang J, He DQ, Li JB (2020) Magnetorheological elastomer precision platform control using OFFO-PID algorithm. Adv Mater Sci Eng. https://doi.org/10.1155/2020/3025863

    Article  Google Scholar 

  209. Huang X, Zhai Y, He G (2022) Research on vibration control technology of robot motion based on magnetorheological elastomer. Materials 15:6479. https://doi.org/10.3390/MA15186479

    Article  Google Scholar 

  210. Xin FL, Bai XX, Qian LJ (2016) Principle, modeling, and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles. J Intell Mater Syst Struct 28:2239–2254. https://doi.org/10.1177/1045389X16672731

    Article  Google Scholar 

  211. Bai XX, Xin FL, Qian LJ, Kan P (2016) Design and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles. In: ASME 2015 conference on smart materials, adaptive structures and intelligent systems, SMASIS 2015, p 1. https://doi.org/10.1115/SMASIS2015-8893

  212. Wang S, Kaaya T, Chen Z et al (2015) Development of an MRE adaptive tuned vibration absorber with self-sensing capability. Smart Mater Struct 24:095012. https://doi.org/10.1088/0964-1726/24/9/095012

    Article  Google Scholar 

  213. Sun S, Deng H, Yang J et al (2015) An adaptive tuned vibration absorber based on multilayered MR elastomers. Smart Mater Struct 24:045045. https://doi.org/10.1088/0964-1726/24/4/045045

    Article  Google Scholar 

  214. Susheelkumar GN, Murigendrappa SM, Gangadharan KV (2019) Theoretical and experimental investigation of model-free adaptive fuzzy sliding mode control for MRE based adaptive tuned vibration absorber. Smart Mater Struct. https://doi.org/10.1088/1361-665X/AB04B6

    Article  Google Scholar 

  215. Mohammad Khansari-Zadeh S, Billard A (2014) Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions. Robot Auton Syst 62:752–765. https://doi.org/10.1016/J.ROBOT.2014.03.001

    Article  Google Scholar 

  216. Yang CY, Fu J, Yu M et al (2014) A new magnetorheological elastomer isolator in shear–compression mixed mode. J Intell Mater Syst Struct 26:1290–1300. https://doi.org/10.1177/1045389X14541492

    Article  Google Scholar 

  217. Rahmat MS, Hudha K, Kadir ZA et al (2021) A hybrid skyhook active force control for impact mitigation using magneto-rheological elastomer isolator. Smart Mater Struct 30:025043. https://doi.org/10.1088/1361-665X/ABD911

    Article  Google Scholar 

  218. Rahmat MS, Hudha K, Abd Kadir Z et al (2020) Modelling and validation of magneto-rheological fluid damper behaviour under impact loading using interpolated multiple adaptive neuro-fuzzy inference system. Multidiscip Model Mater Struct 16:1395–1415. https://doi.org/10.1108/MMMS-10-2019-0187

    Article  Google Scholar 

  219. Liu C, Hemmatian M, Sedaghati R, Wen G (2020) Development and control of magnetorheological elastomer-based semi-active seat suspension isolator using adaptive neural network. Front Mater. https://doi.org/10.3389/FMATS.2020.00171

    Article  Google Scholar 

  220. Nguyen XB, Komatsuzaki T, Iwata Y, Asanuma H (2018) Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction. Mech Syst Signal Process 101:449–466. https://doi.org/10.1016/J.YMSSP.2017.08.040

    Article  Google Scholar 

  221. Yang J, Sun S, Tian T et al (2016) Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events. Mech Syst Signal Process 70–71:811–820. https://doi.org/10.1016/J.YMSSP.2015.08.022

    Article  Google Scholar 

  222. Zhou GY, Wang Q (2006) Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part II: dynamic properties. Int J Solids Struct 43:5403–5420. https://doi.org/10.1016/J.IJSOLSTR.2005.07.044

    Article  Google Scholar 

  223. Zhou GY, Lin KC, Wang Q (2006) Finite element studies on field-dependent rigidities of sandwich beams with magnetorheological elastomer cores. Smart Mater Struct 15:787. https://doi.org/10.1088/0964-1726/15/3/014

    Article  Google Scholar 

  224. Choi WJ, Xiong YP, Shenoi RA (2016) Vibration characteristics of sandwich beams with steel skins and magnetorheological elastomer cores. Adv Struct Eng 13:837–847. https://doi.org/10.1260/1369-4332.13.5.837

    Article  Google Scholar 

  225. Hu G, Guo M, Li W et al (2011) Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields. Smart Mater Struct 20:127001. https://doi.org/10.1088/0964-1726/20/12/127001

    Article  Google Scholar 

  226. Nayak B, Dwivedy SK, Murthy KSRK (2011) Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. J Sound Vib 330:1837–1859. https://doi.org/10.1016/J.JSV.2010.10.041

    Article  Google Scholar 

  227. Yildirim T, Ghayesh MH, Li W, Alici G (2016) Nonlinear dynamics of a parametrically excited beam with a central magneto-rheological elastomer patch: an experimental investigation. Int J Mech Sci 106:157–167. https://doi.org/10.1016/J.IJMECSCI.2015.11.032

    Article  Google Scholar 

  228. Dyniewicz B, Bajkowski JM, Bajer CI (2015) Semi-active control of a sandwich beam partially filled with magnetorheological elastomer. Mech Syst Signal Process 60–61:695–705. https://doi.org/10.1016/J.YMSSP.2015.01.032

    Article  Google Scholar 

  229. Ying ZG, Ni YQ, Duan YF (2015) Parametric optimal bounded feedback control for smart parameter-controllable composite structures. J Sound Vib 339:38–55. https://doi.org/10.1016/J.JSV.2014.11.018

    Article  Google Scholar 

  230. Yildirim T, Ghayesh MH, Li W, Alici G (2016) Experimental nonlinear dynamics of a geometrically imperfect magneto-rheological elastomer sandwich beam. Compos Struct 138:381–390. https://doi.org/10.1016/J.COMPSTRUCT.2015.11.063

    Article  Google Scholar 

  231. Szmidt T, Pisarski D, Konowrocki R et al (2019) Adaptive damping of a double-beam structure based on magnetorheological elastomer. Shock Vib. https://doi.org/10.1155/2019/8526179

    Article  Google Scholar 

Download references

Funding

The authors affirm that throughout the preparation of this manuscript, they did not receive any funds, grants, or other forms of support.

Author information

Authors and Affiliations

Authors

Contributions

NKD took the lead in writing and editing this paper, with collaborative discussions with Gagandeep. SMS contributed through peer reviewing, while CS played a crucial role in reviewing, offering in-depth analysis and critical feedback that enhanced the manuscript's quality. Their thorough examination ensured coherence and methodological rigor, adding significant value to the research.

Corresponding author

Correspondence to Chanderkant Susheel.

Ethics declarations

Conflict of interest

The authors of this article hereby declare that they have no financial, professional, or personal conflicts of interest that could have influenced the content or presentation of the work described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, N.K., Salodkar, S.M., Gagandeep et al. Advances in Modeling and Control of Magnetorheological Elastomers for Engineering Applications. Arch Computat Methods Eng 31, 1823–1865 (2024). https://doi.org/10.1007/s11831-023-10031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10031-0

Navigation