Skip to main content
Log in

Comparative Analysis of Diabetic Retinopathy Classification Approaches Using Machine Learning and Deep Learning Techniques

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is an eye disease caused due to excess of sugar in retinal blood vessels and obstructs vision. Regular and timely diagnosis can prevent the severity of diabetic retinopathy at an initial stage. Manual diagnosis of diabetic retinopathy is time-consuming and thus a plethora of work has been done by researchers to automate the classification of diabetic retinopathy using machine learning and deep learning techniques. The present review pivots around the research papers covering recent and effective automated DR classification techniques from 2011 to 2022. A comparative analysis of these papers highlights the summary of DR classification datasets, pre-processing techniques, various advanced classification algorithms, and their performance. Along with the summary and analysis of the classification techniques, the present paper demonstrates the experimentation of eight pre-trained convolution neural network models on DR benchmark classification datasets. This is to help the researchers to choose the best pre-trained classification model for the corresponding DR dataset. The use of deep learning and machine learning algorithms demonstrated excellent performance; however, researchers still need to explore the design constraints of the classification models to have effective results. Attention mechanisms and vision transformers are recent breakthroughs that can be used to solve classification challenges. The objective of this article is to provide a single platform for researchers to access state-of-the-art work in the classification of diabetic retinopathy, the results of various pre-trained models on DR benchmark classification datasets, and future research prospects for the researchers working in this challenging area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. WHO (2021) Update from the Seventy-fourth World Health Assembly

  2. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen S-J, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BEK, Klein R, Krishnaiah S, Mayurasakorn K, O’Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY (2012) Eye Disease (META-EYE) Study Group, M.-A Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ren C, Liu W, Li J, Cao Y, Xu J, Lu P (2019) Physical activity and risk of diabetic retinopathy: a systematic review and meta-analysis. Acta Diabetol 56:823–837. https://doi.org/10.1007/s00592-019-01319-4

    Article  PubMed  Google Scholar 

  4. Wong TY, Bressler NM (2016) Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA. https://doi.org/10.1001/jama.2016.17563

    Article  PubMed  Google Scholar 

  5. Glasgow ACM (1993) Early detection and screening for diabetic retinopathy. Eye 7:254–259. https://doi.org/10.1038/eye.1993.59

    Article  Google Scholar 

  6. Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, Quellec G (2010) Automated early detection of diabetic retinopathy. Ophthalmology 117:1147–1154. https://doi.org/10.1016/j.ophtha.2010.03.046

    Article  PubMed  Google Scholar 

  7. Saeed MU, Oleszczuk JD (2016) Advances in retinal imaging modalities: challenges and opportunities. World J Ophthalmol 6:10–19. https://doi.org/10.5318/wjo.v6.i2.10

    Article  Google Scholar 

  8. EyePACS: Diabetic Retinopathy Detection (2015). https://www.kaggle.com/c/diabetic-retinopathy-detection/data?select=trainLabels.csv.zip

  9. Cuadros J, Bresnick G (2009) EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. Diabetes Sci Technol 3:509–516

    Article  Google Scholar 

  10. Li T, Gao Y, Wang K, Guo S, Liu H, Kang H (2019) Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf Sci 501:511–522. https://doi.org/10.1016/j.ins.2019.06.011

    Article  ADS  Google Scholar 

  11. Memari N, Ramli AR, Saripan MIB, Mashohor S, Moghbel M (2019) Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J Med Biol Eng 39:713–731. https://doi.org/10.1007/s40846-018-0454-

    Article  Google Scholar 

  12. Li M, Ma Z, Liu C, Zhang G, Han Z (2017) Robust retinal blood vessel segmentation based on reinforcement local descriptions. BioMed Res Int. https://doi.org/10.1155/2017/2028946

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dash J, Bhoi N (2017) A thresholding based technique to extract retinal blood vessels from fundus images. Future Comput Inform J 2:103–109. https://doi.org/10.1016/j.fcij.2017.10.001

    Article  Google Scholar 

  14. Antal B, Hajdu A (2014) An ensemble-based system for automatic screening of diabetic retinopathy. Knowl-Based Syst 60:20–27. https://doi.org/10.1016/j.knosys.2013.12.023

    Article  Google Scholar 

  15. Yu S, Xiao D, Kanagasingam Y (2018) Machine learning based automatic neovascularization detection on optic disc region. IEEE J Biomed Health Inform 22:886–894. https://doi.org/10.1109/JBHI.2017.2710201

    Article  PubMed  Google Scholar 

  16. Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A (2018) Microaneurysm detection using fully convolutional neural networks. Comput Methods Programs Biomed 158:185–192. https://doi.org/10.1016/j.cmpb.2018.02.016

    Article  PubMed  Google Scholar 

  17. Qiao L, Zhu Y, Zhou H (2020) Diabetic retinopathy detection using prognosis of microaneurysm and early diagnosis system for non-proliferative diabetic retinopathy based on deep learning algorithms. IEEE Access 8:104292–104302. https://doi.org/10.1109/ACCESS.2020.2993937

    Article  Google Scholar 

  18. Tsiknakis N, Theodoropoulos D, Manikis G, Ktistakis E, Boutsora O, Berto A, Scarpa F, Scarpa A, Fotiadis DI, Marias K (2021) Deep learning for diabetic retinopathy detection and classification based on fundus images: a review. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2021.104599

    Article  PubMed  Google Scholar 

  19. Asiri N, Hussain M, Al Adel F, Alzaidi N (2019) Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey. Artif Intell Med 99:101701. https://doi.org/10.1016/j.artmed.2019.07.009

    Article  PubMed  Google Scholar 

  20. S V, R V (2021) A survey on diabetic retinopathy disease detection and classification using deep learning techniques. In: 2021 Seventh international conference on bio signals, images, and instrumentation (ICBSII), pp 1–4. https://doi.org/10.1109/ICBSII51839.2021.9445163

  21. Atwany MZ, Sahyoun AH, Yaqub M (2022) Deep learning techniques for diabetic retinopathy classification: a survey. IEEE Access 10:28642–28655. https://doi.org/10.1109/ACCESS.2022.3157632

    Article  Google Scholar 

  22. Nørgaard MF, Grauslund J (2018) Automated screening for diabetic retinopathy—a systematic review. Ophthalm Res 60:9–17. https://doi.org/10.1159/000486284

    Article  Google Scholar 

  23. Raman R, Srinivasan S, Virmani S, Sivaprasad S, Rao C, Rajalakshmi R (2019) Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye (Basingstoke) 33:97–109. https://doi.org/10.1038/s41433-018-0269-y

    Article  Google Scholar 

  24. Grzybowski A, Brona P, Lim G, Ruamviboonsuk P, Tan GSW, Abramoff M, Ting DSW (2020) Artificial intelligence for diabetic retinopathy screening: a review. Eye (Basingstoke) 34:451–460. https://doi.org/10.1038/s41433-019-0566-0

    Article  Google Scholar 

  25. Theodoropoulos D (2019) A literature review on DL based diagnosis systems for ophthalmic diseases. https://www.academia.edu/40517097

  26. Grauslund J (2022) Diabetic retinopathy screening in the emerging era of artificial intelligence. Diabetologia 65:1415–1423. https://doi.org/10.1007/s00125-022-05727-0

    Article  PubMed  Google Scholar 

  27. Inuwa R, Bashir SA, Abisoye OA, Adepoju SA (2021) Comparative evaluation of machine learning techniques for the detection of diabetic retinopathy. Cyber Nigeria/IEEE

  28. Das D, Biswas S, Bandyopadhyay S (2022) A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Multimedia Tools Appl 81:1–43. https://doi.org/10.1007/s11042-022-12642-4

    Article  Google Scholar 

  29. Nagpal D, Panda SN, Malarvel M, Pattanaik PA, Zubair Khan M (2022) A review of diabetic retinopathy: datasets, approaches, evaluation metrics and future trends. J King Saud Univ Comput Inf Sci 34(9):7138–7152. https://doi.org/10.1016/j.jksuci.2021.06.006

    Article  Google Scholar 

  30. Maher R (2015) Review of automated detection for diabetes retinopathy using fundus images. IJARCSSE 5:1129–1136

    Google Scholar 

  31. Amin J, Sharif M, Yasmin M (2016) A review on recent developments for detection of diabetic retinopathy. Scientifica (Cairo). https://doi.org/10.1155/2016/6838976

    Article  PubMed  Google Scholar 

  32. Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y (2017) Applications of artificial intelligence in ophthalmology: general overview. Ophthalmology. https://doi.org/10.1155/2018/5278196

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kondapi K, Silambanan S, Kumar L, Moorthy S (2021) Does N-carboxymethyl lysine serve as a prognostic biomarker of diabetic nephropathy? J Clin Diagn Res. https://doi.org/10.7860/JCDR/2021/46489.14575

    Article  Google Scholar 

  34. Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. https://doi.org/10.1172/jci.insight.93751

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lingam G, Wong T-Y (2013) Systemic medical management of diabetic retinopathy. Middle East Afr J Ophthalmol 20:301–8. https://doi.org/10.4103/0974-9233.120010

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gayathri S, Gopi VP, Palanisamy P (2020) A lightweight cnn for diabetic retinopathy classification from fundus images. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2020.102115

    Article  Google Scholar 

  37. Heng LZ, Comyn O, Peto T, Tadros C, Ng E, Sivaprasad S, Hykin PG (2013) Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med 30(6):640–650. https://doi.org/10.1111/dme.12089

    Article  CAS  PubMed  Google Scholar 

  38. Crick RP, Khaw PT (2003) A TEXTBOOK OF CLINICAL: a practical guide to disorders of the eyes and their management, 3rd edn. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  39. Wu L (2013) Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 4:290. https://doi.org/10.4239/wjd.v4.i6.290

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT, Lum F (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110:1677–1682. https://doi.org/10.1016/S0161-6420(03)00475-5

    Article  CAS  PubMed  Google Scholar 

  41. Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, Prescott GJ, Sharp PF, Olson JA (2007) The efficacy of automated disease/no disease grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol 91:1512–1517. https://doi.org/10.1136/bjo.2007.11945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oliveira CM, Cristóvão LM, Ribeiro ML, Abreu JRF (2011) Improved automated screening of diabetic retinopathy. Ophthalmologica 226:191–197. https://doi.org/10.1159/000330285

    Article  PubMed  Google Scholar 

  43. Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Massin P, Cochener B, Gain P, Tang L, Lamard M, Moga DC, Quellec G, Niemeijer M (2013) Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 131:351–357. https://doi.org/10.1001/jamaophthalmol.2013.1743

    Article  PubMed  Google Scholar 

  44. Decencière E, Cazuguel G, Zhang X, Thibault G, Klein J-C, Meyer F, Marcotegui B, Quellec G, Lamard M, Danno R, Elie D, Massin P, Viktor Z, Erginay A, Laÿ B, Chabouis A (2013) Teleophta: machine learning and image processing methods for teleophthalmology. IRBM 34(2):196–203. https://doi.org/10.1016/j.irbm.2013.01.010. (Special issue : ANR TECSAN : Technologies for Health and Autonomy)

    Article  Google Scholar 

  45. Solanki K, Ramachandra CA, Bhat S, Bhaskaranand M, Nittala MG, Sadda SR (2015) Eyeart: automated, high-throughput, image analysis for diabetic retinopathy screening. Investig Ophthalmol Vis Sci 56:1429–1429

    Google Scholar 

  46. Natarajan S, Jain A, Krishnan R, Rogye A, SS S (2019) Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone. JAMA Ophthalmol 137(10):1182–1188. https://doi.org/10.1001/jamaophthalmol.2019.2923

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang X-N, Dai L, Li S-T, Kong H-Y, Sheng B, Wu Q (2020) Automatic grading system for diabetic retinopathy diagnosis using deep learning artificial intelligence software. Curr Eye Res 45(12):1550–1555

    Article  PubMed  Google Scholar 

  48. Rogers T, Gonzalez-Bueno J, Garcia RF, Lopez ES, Méndez DM, Vassallo J, Lansingh V, Trikha S, Jaccard N (2021) Evaluation of an ai system for the detection of diabetic retinopathy from images captured with a handheld portable fundus camera: the mailor ai study. Eye (Lond) 35:632–638. https://doi.org/10.1038/s41433-020-0927-8

    Article  CAS  PubMed  Google Scholar 

  49. International Diabetes Federation Annual Report 2017 (2017). https://www.idf.org/our-activities/advocacy-awareness/resources-and-tools/149-idf-annual-report-2017.html

  50. DIABETES N, INDIA DRS (2019) 2015–2019—a summary report. https://npcbvi.gov.in/writeReadData/mainlinkFile/File342.pdf

  51. Kaur S, Goel N (2020) A dilated convolutional approach for inflammatory lesion detection using multi-scale input feature fusion (workshop paper). In: 2020 IEEE Sixth international conference on multimedia big data (BigMM), pp 386–393. https://doi.org/10.1109/BigMM50055.2020.00066

  52. Tufail A, Kapetanakis VV, Salas-Vega S, Egan C, Rudisill C, Owen CG, Lee A, Louw V, Anderson J, Liew G, Bolter L, Bailey C, Sadda S, Taylor P, Rudnicka AR (2016) An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol Assess. https://doi.org/10.3310/hta20920

    Article  PubMed  PubMed Central  Google Scholar 

  53. WHO Diabetic retinopathy screening: a short guide (2020). https://apps.who.int/iris/bitstream/handle/10665/336660/9789289055321-eng.pdf

  54. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, Hamzah H, Ho J, Lee XQ, Hsu W, Lee ML, Musonda L, Chandran M, Chipalo-Mutati G, Muma M, Tan GSW, Sivaprasad S, Menon G, Wong TY, Ting DSW (2019) Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health. https://doi.org/10.1016/S2589-7500(19)30004-4

    Article  PubMed  Google Scholar 

  55. Huemer J, Wagner SK, Sim DA (2020) The evolution of diabetic retinopathy screening programmes: a chronology of retinal photography from 35 mm slides to artificial intelligence. Clin Ophthalmol (Auckland, N.Z.). https://doi.org/10.2147/OPTH.S261629

  56. Odeh I, Alkasassbeh M, Alauthman M (2021) Diabetic retinopathy detection using ensemble machine learning. arXiv:2106.12545

  57. Bala R, Sharma A, Goel N (2022) A lightweight deep learning approach for diabetic retinopathy classification. Artificial intelligence and speech technology. Springer, Cham, pp 277–287. https://doi.org/10.1007/978-3-030-95711-7_25

    Chapter  Google Scholar 

  58. Kubat M, Matwin S (2000) Addressing the curse of imbalanced training sets: one-sided selection

  59. McHugh M (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22:276–82

    Article  PubMed  Google Scholar 

  60. Visa S, Ramsay B, Ralescu AL, Van Der Knaap E (2011) Confusion matrix based feature selection. Maics 710:120–127

    Google Scholar 

  61. Kaggle: APTOS 2019 Blindness Detection (2019). https://www.kaggle.com/c/aptos2019-blindness-detection/data

  62. Decencière E, Zhang X, Cazuguel G, Laÿ B, Cochener B, Trone C, Gain P, Ordóñez-Varela JR, Massin P, Erginay A, Charton B, Klein JC (2014) Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol 33:231–234. https://doi.org/10.5566/ias.1155

    Article  Google Scholar 

  63. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian Diabetic Retinopathy Image Dataset (IDRiD): a database for diabetic retinopathy screening research. Data. https://doi.org/10.21227/H25W98

    Article  Google Scholar 

  64. DeepDRiD (2019). https://isbi.deepdr.org/

  65. Pires R, Jelinek FH, Wainer J, Valle E, Rocha A (2016) Advancing bag-of-visual-words representations for lesion classification in retinal images. PloS one 9(6):e96814. https://doi.org/10.6084/m9.figshare.953671.v3

    Article  ADS  Google Scholar 

  66. Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Uusitalo H, Kälviäinen H, Pietilä J (2006) DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms, Technical report. https://www.it.lut.fi/project/imageret/diaretdb0/

  67. Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J (2007) Diaretdb1 diabetic retinopathy database and evaluation protocol. BMVC, pp 1–10. https://doi.org/10.5244/C.21.15

  68. Pachade S, Porwal P, Thulkar D, Kokare M, Deshmukh G, Sahasrabuddhe V, Giancardo L, Quellec G, Mériaudeau F (2020) Retinal fundus multi-disease image dataset (RFMiD). IEEE Dataport. https://doi.org/10.21227/s3g7-st65

    Article  Google Scholar 

  69. Derwin DJ, Shan BP (2020) Diabetic retinopathy-fundus image dataset (AGAR300). IEEE Dataport. https://doi.org/10.21227/fsnq-tn19

    Article  Google Scholar 

  70. Prentašić P, Lončarić S, Vatavuk Z, Benčić G, Subašić M, Petković T, Dujmović L, Malenica-Ravlić M, Budimlija N, Tadić R (2013) Diabetic retinopathy image database(dridb): a new database for diabetic retinopathy screening programs research. In: 2013 8th International symposium on image and signal processing and analysis (ISPA), pp 711–716. https://doi.org/10.1109/ISPA.2013.6703830

  71. Niemeijer M, Van Ginneken B, Cree MJ, Mizutani A, Quellec G, Sánchez CI, Zhang B, Hornero R, Lamard M, Muramatsu C (2009) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195

    Article  PubMed  Google Scholar 

  72. Staal J, Abramoff MD, Niemeijer M, Viergever MA, Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509. https://doi.org/10.1109/TMI.2004.825627

    Article  PubMed  Google Scholar 

  73. Hoover A, Kouznetsova V, Goldbaum M (2020) Locating blood vessels in retinal images by piece-wise threhsold probing of a matched filter response. IEEE Trans Med Imaging 19:203–210

    Article  Google Scholar 

  74. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548. https://doi.org/10.1109/TBME.2012.2205687

    Article  PubMed  Google Scholar 

  75. Arunkumar R, Karthigaikumar P (2017) Multi-retinal disease classification by reduced deep learning features. Neural Comput Appl 28:329–334. https://doi.org/10.1007/s00521-015-2059-9

    Article  Google Scholar 

  76. Yang J, Shi R, Wei D, Liu Z, Zhao L, Ke B, Pfister H, Ni B (2022) Medmnist v2—a large-scale lightweight benchmark for 2d and 3d biomedical image classification. arXiv:2110.14795

  77. Jan O, Radim K, Attila B, Joachim H, Jiri J, Jiri G, Tomas K, Pavel C, Ondrej S, Elli A (2013) Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Proc 7(4):373–383

    Article  MathSciNet  Google Scholar 

  78. ODIR: Ocular Disease Recognition (2020). https://www.kaggle.com/andrewmvd/ocular-disease-recognition-odir5k

  79. Yoong SL, Hall A, Williams CM, Skelton E, Oldmeadow C, Wiggers J, Karimkhani C, Boyers LN, Dellavalle RP, Hilton J (2015) Alignment of systematic reviews published in the cochrane database of systematic reviews and the database of abstracts and reviews of effectiveness with global burden-of-disease data: a bibliographic analysis. J Epidemiol Community Health 69(7):708–714

    Article  PubMed  Google Scholar 

  80. Leeza M, Farooq H (2019) Detection of severity level of diabetic retinopathy using bag of features model. IET Comput Vis 13:523–530. https://doi.org/10.1049/iet-cvi.2018.526

    Article  Google Scholar 

  81. Sikder N, Masud M, Bairagi AK, Arif ASM, Nahid AA, Alhumyani HA (2021) Severity classification of diabetic retinopathy using an ensemble learning algorithm through analyzing retinal images. Symmetry. https://doi.org/10.3390/sym1304067

    Article  Google Scholar 

  82. Safitri DW, Juniati D (2017) Classification of diabetic retinopathy using fractal dimension analysis of eye fundus image. In: AIP conference proceedings vol 1867, p 020011 (2017). https://doi.org/10.1063/1.4994414

  83. Carrera EV, González A, Carrera R (2017) Automated detection of diabetic retinopathy using svm. In: 2017 IEEE XXIV international conference on electronics, electrical engineering and computing (INTERCON), pp 1–4. https://doi.org/10.1109/INTERCON.2017.807969

  84. Acharya UR, Ng E, Tan JH, Subbhuraam VS, Kh N (2011) An integrated index for the identification of diabetic retinopathy stages using texture parameters. J Med Syst 36:2011–20. https://doi.org/10.1007/s10916-011-9663-8

    Article  PubMed  Google Scholar 

  85. Mohammadian S, Karsaz A, Roshan YM (2017) A comparative analysis of classification algorithms in diabetic retinopathy screening. In: 2017 7th International conference on computer and knowledge engineering (ICCKE), pp 84–89. https://doi.org/10.1109/ICCKE.2017.8167934

  86. Mahendran G, Dhanasekaran R (2015) Investigation of the severity level of diabetic retinopathy using supervised classifier algorithms. Comput Electr Eng 45:312–323. https://doi.org/10.1016/j.compeleceng.2015.01.013

    Article  Google Scholar 

  87. Jadhav AS, Patil PB, Biradar S (2020) Computer-aided diabetic retinopathy diagnostic model using optimal thresholding merged with neural network. Int J Intell Comput Cybern 13:283–310. https://doi.org/10.1108/IJICC-11-2019-0119

    Article  Google Scholar 

  88. Shaban M, Ogur Z, Mahmoud A, Switala A, Shalaby A, Khalifeh HA, Ghazal M, Fraiwan L, Giridharan G, Sandhu H, El-Baz AS (2020) A convolutional neural network for the screening and staging of diabetic retinopathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0233514

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xu K, Feng D, Mi H (2017) Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules. https://doi.org/10.3390/molecules2212205

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ghosh R, Ghosh K, Maitra S (2017) Automatic detection and classification of diabetic retinopathy stages using cnn. In: 2017 4th International conference on signal processing and integrated networks (SPIN), pp 550–554. https://doi.org/10.1109/SPIN.2017.8050011

  91. Raju M, Pagidimarri V, Barreto R, Kadam A, Kasivajjala V, Aswath A (2017) Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy. Stud Health Technol Inform 245:559–563

    PubMed  Google Scholar 

  92. Bhardwaj C, Jain S, Sood M (2020) Deep learning based diabetic retinopathy prediction of colored fundus images with parameter tuning. In: Advances in computational intelligence techniques. Springer, Singapore, pp 53–62. https://doi.org/10.1007/978-981-15-2620-6_

  93. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Procedia Comput Sci 90:200–205. https://doi.org/10.1016/j.procs.2016.07.014. (20th Conference on Medical Image Understanding and Analysis (MIUA 2016))

    Article  Google Scholar 

  94. Ting D, Cheung C, Lim G, Tan G, Quang N, Gan A, Hamzah H, Garcia-Franco R, Yeo IS, Lee S, Wong E, Sabanayagam C, Baskaran M, Tan N, Finkelstein E, Lamoureux E, Wong I, Bressler N, Varma R, Jonas J, He M, Cheng C, Cheung G, Aung T, Hsu W, Lee M, Wong T (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211–2223. https://doi.org/10.1001/jama.2017.18152

    Article  PubMed  PubMed Central  Google Scholar 

  95. Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M (2017) Deep image mining for diabetic retinopathy screening. Med Image Anal 39:178–193

    Article  PubMed  Google Scholar 

  96. Zhang G, Pan J, Zhang Z, Zhang H, Xing C, Sun B, Li M (2021) Hybrid graph convolutional network for semi-supervised retinal image classification. IEEE Access 9:35778–35789. https://doi.org/10.1109/ACCESS.2021.3061690

    Article  Google Scholar 

  97. Athira TR, Sivadas A, George A, Paul A, Gopan NR (2019) Automatic detection of diabetic retinopathy using r-cnn. Int Res J Eng Technol 6:5595

    Google Scholar 

  98. Putra RE, Tjandrasa H, Suciati N, Wicaksono AY (2020) Non-proliferative diabetic retinopathy classification based on hard exudates using combination of frcnn, morphology, and anfis. In: 2020 Third international conference on vocational education and electrical engineering (ICVEE), pp 1–6. https://doi.org/10.1109/ICVEE50212.2020.9243185

  99. Riaz H, Park J, Choi H, Kim H, Kim J (2020) Deep and densely connected networks for classification of diabetic retinopathy. Diagnostics 10:96. https://doi.org/10.3390/diagnostics10010024

    Article  Google Scholar 

  100. Hossen MS, Reza AA, Mishu MC (2020) An automated model using deep convolutional neural network for retinal image classification to detect diabetic retinopathy. PervasiveHealth: Pervasive Computing Technologies for Healthcare https://doi.org/10.1145/3377049.3377067

  101. Tsiknakis N, Theodoropoulos D, Manikis G, Ktistakis E, Boutsora O, Berto A, Scarpa F, Scarpa A, Fotiadis DI, Marias K (2021) Deep learning for diabetic retinopathy detection and classification based on fundus images: a review. Comput Biol Med 135:104599. https://doi.org/10.1016/j.compbiomed.2021.104599

    Article  PubMed  Google Scholar 

  102. Wang X, Xu M, Zhang J, Jiang L, Li L, He M, Wang N, Liu H, Wang Z (2022) Joint learning of multi-level tasks for diabetic retinopathy grading on low-resolution fundus images. IEEE J Biomed Health Inform 26(5):2216–2227. https://doi.org/10.1109/JBHI.2021.3119519

    Article  PubMed  Google Scholar 

  103. Roshini TV, Ravi RV, Mathew AR, Kadan AB, Subbian PS (2020) Automatic diagnosis of diabetic retinopathy with the aid of adaptive average filtering with optimized deep convolutional neural network. Int J Imaging Syst Technol 30:1173–1193. https://doi.org/10.1002/ima.22419

    Article  Google Scholar 

  104. Pedro C, Aurélio C (2017) Convolutional bag of words for diabetic retinopathy detection from eye fundus images. In: 2017 Fifteenth IAPR international conference on machine vision applications (MVA), pp 165–168. https://doi.org/10.23919/MVA.2017.7986827

  105. Maistry A, Pillay A, Jembere E (2020) Improving the accuracy of diabetes retinopathy image classification using augmentation. In: Conference of the South African Institute of computer scientists and information technologists 2020. SAICSIT ’20. Association for Computing Machinery, New York, NY, USA, pp 134–140. https://doi.org/10.1145/3410886.3410914

  106. Pires R, Avila S, Wainer J, Valle E, Abramoff MD, Rocha A (2019) A data-driven approach to referable diabetic retinopathy detection. Artif Intell Med 96:93–106. https://doi.org/10.1016/j.artmed.2019.03.009

    Article  PubMed  Google Scholar 

  107. Hemanth DJ, Deperlioglu O, Kose U (2020) An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput Appl 32:707–721. https://doi.org/10.1007/s00521-018-03974-0

    Article  Google Scholar 

  108. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA J Am Med Assoc 316:2402–2410. https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  109. Zeng X, Chen H, Luo Y, Ye W (2019) Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access 7:30744–30753

    Article  Google Scholar 

  110. Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney M-L, Mehrotra A (2018) Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. JAMA Netw Open 1(5):182665–182665. https://doi.org/10.1001/jamanetworkopen.2018.266

    Article  Google Scholar 

  111. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, Peng L, Webster DR (2018) Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125(8):1264–1272. https://doi.org/10.1016/j.ophtha.2018.01.034

    Article  PubMed  Google Scholar 

  112. Dekhil O, Naglah A, Shaban M, Ghazal M, Taher F, Elbaz A (2019) Deep learning based method for computer aided diagnosis of diabetic retinopathy. In: 2019 IEEE international conference on imaging systems and techniques (IST), pp 1–4. https://doi.org/10.1109/IST48021.2019.9010333

  113. Rakhlin A (2017) Diabetic retinopathy detection through integration of deep learning classification framework. bioRxiv. https://doi.org/10.1101/225508

  114. Martinez-Murcia FJ, Ortiz A, Ramírez J, Górriz JM, Cruz R (2021) Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy. Neurocomputing 452:424–434. https://doi.org/10.1016/j.neucom.2020.04.148

    Article  Google Scholar 

  115. Sharmin M, Nasser K (2021) Multitasking deep learning model for detection of five stages of diabetic retinopathy. IEEE Access 9:123220–123230. https://doi.org/10.1109/ACCESS.2021.3109240

    Article  Google Scholar 

  116. Shankar K, Sait ARW, Gupta D, Lakshmanaprabu SK, Khanna A, Pandey HM (2020) Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model. Pattern Recogn Lett 133:210–216. https://doi.org/10.1016/j.patrec.2020.02.026

    Article  ADS  Google Scholar 

  117. Kassani SH, Kassani PH, Khazaeinezhad R, Wesolowski MJ, Schneider KA, Deters R (2019) Diabetic retinopathy classification using a modified xception architecture. In: 2019 IEEE international symposium on signal processing and information technology (ISSPIT), pp 1–6. https://doi.org/10.1109/ISSPIT47144.2019.9001846

  118. Shanthi T, Sabeenian RS (2019) Modified alexnet architecture for classification of diabetic retinopathy images. Comput Electr Eng 76:56–64. https://doi.org/10.1016/j.compeleceng.2019.03.004

    Article  Google Scholar 

  119. Kolla M, Venugopal T (2021) Efficient classification of diabetic retinopathy using binary cnn. In: 2021 International conference on computational intelligence and knowledge economy (ICCIKE), pp 244–247. https://doi.org/10.1109/ICCIKE51210.2021.9410719

  120. Khalifa NEM, Loey M, Taha MHN, Mohamed HNET (2019) Deep transfer learning models for medical diabetic retinopathy detection. Acta Inform Med 27:327–332. https://doi.org/10.5455/aim.2019.27.327-332

    Article  PubMed  PubMed Central  Google Scholar 

  121. Habib Raj MA, Mamun MA, Faruk MF (2020) Cnn based diabetic retinopathy status prediction using fundus images. In: 2020 IEEE region 10 symposium (TENSYMP), pp 190–193. https://doi.org/10.1109/TENSYMP50017.2020.9230974

  122. Shubin D, Eytan D, Goodfellow SD (2021) About explicit variance minimization: training neural networks for medical imaging with limited data annotations. arxiv:2105.14117

  123. Wan S, Liang Y, Zhang Y (2018) Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng 72:274–282. https://doi.org/10.1016/j.compeleceng.2018.07.042

    Article  Google Scholar 

  124. Adriman R, Muchtar K, Maulina N (2021) Performance evaluation of binary classification of diabetic retinopathy through deep learning techniques using texture feature. Procedia Comput Sci 179:88–94. https://doi.org/10.1016/j.procs.2021.12.012

    Article  Google Scholar 

  125. Pour AM, Seyedarabi H, Jahromi SHA, Javadzadeh A (2020) Automatic detection and monitoring of diabetic retinopathy using efficient convolutional neural networks and contrast limited adaptive histogram equalization. IEEE Access 8:136668–136673. https://doi.org/10.1109/ACCESS.2020.3005044

    Article  Google Scholar 

  126. Islam MT, Al-Absi HRH, Ruagh EA, Alam T (2021) Dianet: a deep learning based architecture to diagnose diabetes using retinal images only. IEEE Access 9:15686–15695. https://doi.org/10.1109/ACCESS.2021.3052477

    Article  Google Scholar 

  127. Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR (2019) Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 126:552–564. https://doi.org/10.1016/j.ophtha.2018.11.01

    Article  PubMed  Google Scholar 

  128. Jiang H, Yang K, Gao M, Zhang D, Ma H, Qian W (2019) An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In: 2019 41st Annual international conference of the ieee engineering in medicine and biology society (EMBC), pp 2045–2048. https://doi.org/10.1109/EMBC.2019.8857160

  129. Sahlsten J, Jaskari J, Kivinen J, Turunen L, Jaanio E, Hietala K, Kaski K (2019) Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci Rep. https://doi.org/10.1038/s41598-019-47181-w

    Article  PubMed  PubMed Central  Google Scholar 

  130. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57:5200–5206. https://doi.org/10.1167/iovs.16-19964

    Article  PubMed  Google Scholar 

  131. Qummar S, Khan FG, Shah S, Khan A, Shamshirband S, Rehman ZU, Ahmed Khan I, Jadoon W (2019) A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7:150530–150539. https://doi.org/10.1109/ACCESS.2019.2947484

    Article  Google Scholar 

  132. Liu H, Yue K, Cheng S, Pan C, Sun J, Li W (2020) Hybrid model structure for diabetic retinopathy classification. J Healthc Eng. https://doi.org/10.1155/2020/8840174

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tummala S (2022) Efficientnetv2 for quality estimation of diabetic retinopathy images from deepdrid. https://doi.org/10.21203/rs.3.rs-2195089/v1

  134. Tymchenko B, Marchenko P, Spodarets D (2020) Deep learning approach to diabetic retinopathy detection. arxiv:2003.02261

  135. Bodapati JD, Naralasetti V, Shareef SN, Hakak S, Bilal M, Maddikunta PK, Jo O (2020) Blended multi-modal deep convnet features for diabetic retinopathy severity prediction. Electronics. https://doi.org/10.3390/electronics9060914

    Article  Google Scholar 

  136. Li F, Liu Z, Chen H, Jiang M, Zhang X, Wu Z (2019) Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. Transl Vis Sci Technol. https://doi.org/10.1167/tvst.8.6.4

    Article  PubMed  PubMed Central  Google Scholar 

  137. Li X, Hu X, Yu L, Zhu L, Fu CW, Heng PA (2020) Canet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imaging 39:1483–1493. https://doi.org/10.1109/TMI.2019.2951844

    Article  CAS  PubMed  Google Scholar 

  138. Erciyas A, Barişçi N (2021) An effective method for detecting and classifying diabetic retinopathy lesions based on deep learning. Comput Math Methods Med. https://doi.org/10.1155/2021/9928899

    Article  PubMed  PubMed Central  Google Scholar 

  139. Farag MM, Fouad M, Abdel-Hamid AT (2022) Automatic severity classification of diabetic retinopathy based on densenet and convolutional block attention module. IEEE Access 10:38299–38308. https://doi.org/10.1109/ACCESS.2022.3165193

    Article  Google Scholar 

  140. He A, Li T, Li N, Wang K, Fu H (2021) CABNet: category attention block for imbalanced diabetic retinopathy grading. IEEE Trans Med Imaging 40(1):143–153. https://doi.org/10.1109/TMI.2020.3023463

    Article  PubMed  Google Scholar 

  141. Zhe W, Yanxin Y, Jianping S, Wei F, Hongsheng L, Xiaogang W (2017) Zoom-in-net: deep mining lesions for diabetic retinopathy detection. In: Maxime D, Lena M-H, Alfred F, Pierre J, Louis CD, Simon D (eds) Medical image computing and computer assisted intervention—MICCAI 2017. Springer, Cham, pp 267–275

    Google Scholar 

  142. Wu Z, Shi G, Chen Y, Shi F, Chen X, Coatrieux G, Yang J, Luo LM, Li S (2020) Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Artif Intell Med. https://doi.org/10.1016/j.artmed.2020.101936

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mohan NJ, Murugan R, Goel T, Roy P (2022) Vit-dr: vision transformers in diabetic retinopathy grading using fundus images. In: 2022 IEEE 10th region 10 humanitarian technology conference (R10-HTC), pp 167–172. https://doi.org/10.1109/R10-HTC54060.2022.9930027

  144. Zhao S, Wu Y, Tong M, Yao Y, Qian W, Qi S (2022) Cot-xnet: contextual transformer with xception network for diabetic retinopathy grading. Phys Med Biol 67(24):245003. https://doi.org/10.1088/1361-6560/ac9fa0

    Article  Google Scholar 

  145. Gadekallu TR, Khare N, Bhattacharya S, Singh S, Maddikunta PKR, Ra IH, Alazab M (2020) Early detection of diabetic retinopathy using pca-firefly based deep learning model. Electronics (Switzerland). https://doi.org/10.3390/electronics9020274

    Article  Google Scholar 

  146. Demir F, Taşcı B (2021) An effective and robust approach based on r-cnn+lstm model and ncar feature selection for ophthalmological disease detection from fundus images. J Personal Med 11:1276. https://doi.org/10.3390/jpm11121276

    Article  Google Scholar 

  147. Butt MM, Iskandar DNFA, Abdelhamid SE, Latif G, Alghazo R (2022) Diabetic retinopathy detection from fundus images of the eye using hybrid deep learning features. Diagnostics. https://doi.org/10.3390/diagnostics12071607

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gayathri S, Gopi VP, Palanisamy P (2021) Diabetic retinopathy classification based on multipath cnn and machine learning classifiers. Phys Eng Sci Med 44:639–653. https://doi.org/10.1007/s13246-021-01012-

    Article  CAS  PubMed  Google Scholar 

  149. Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124:962–969. https://doi.org/10.1016/j.ophtha.2017.02.008

    Article  PubMed  Google Scholar 

  150. Alloghani M, Al-Jumeily D, Mustafina J, Hussain AJ, Aljaaf AJ (2019) A systematic review on supervised and unsupervised machine learning algorithms for data science. Unsupervised and Semi-Supervised Learning

  151. Sathya R, Abraham A (2013) Comparison of supervised and unsupervised learning algorithms for pattern classification. IJARAI Int J Adv Res Artif Intell 2:34–38

    Google Scholar 

  152. Donalek C (2011) Supervised and unsupervised learning, Ay-Bi 199

  153. Bala R, Sharma A, Goel N (2022) Classification of fundus images for diabetic retinopathy using machine learning: a brief review. Adv Intell Syst Comput. https://doi.org/10.1007/978-981-16-6887-6_

  154. Sarao V, Veritti D, Lanzetta P (2020) Automated diabetic retinopathy detection with two different retinal imaging devices using artificial intelligence: a comparison study. Graefes Arch Clin Exp Ophthalmol 258:2647–2654. https://doi.org/10.1007/s00417-020-04853-y

    Article  PubMed  Google Scholar 

  155. Wu J (2017) Introduction to convolutional neural networks. LAMBDA Group, China. https://cs.nju.edu.cn/wujx/paper/CNN.pdf

  156. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: ICLR. arxiv:1609.02907

  157. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE conference on computer vision and pattern recognition, pp 580–587. https://doi.org/10.1109/CVPR.2014.8

  158. Mathew A, Amudha P, Sivakumari S (2021) Deep learning techniques: an overview. Adv Intell Syst Comput 1141:599–608. https://doi.org/10.1007/978-981-15-3383-9_54

    Article  Google Scholar 

  159. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, USA. http://www.deeplearningbook.org

  160. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Neural Inf Process Syst 25:1097–1105. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  161. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  162. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556

  163. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

  164. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  165. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, ECCV 2014, vol 8689. https://doi.org/10.1007/978-3-319-10590-1_5

  166. Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.24

  167. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 1800–1807. https://doi.org/10.1109/CVPR.2017.19

  168. Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for convolutional neural networks

  169. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2017) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5mb model size. In: ICLR 2017. arXiv:1602.07360

  170. Zhang D, Bu W, Wu X (2017) Diabetic retinopathy classification using deeply supervised resnet. In: 2017 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 1–6. https://doi.org/10.1109/UIC-ATC.2017.8397469

  171. Zhang Z (2020) Deep-learning-based early detection of diabetic retinopathy on fundus photography using efficientnet. In: Proceedings of the 2020 the 4th international conference on innovation in artificial intelligence. ICIAI 2020, pp 70–74. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3390557.3394303

  172. Woo S, Park J, Lee J, Kweon IS (2018) Cbam: convolutional block attention module. In: Computer vision—ECCV 2018, Lecture Notes in Computer Science() vol 11211. https://doi.org/10.1007/978-3-030-01234-2_

  173. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164

  174. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need

  175. Hu J, Shen L, Albanie S, Sun G, Wu E (2019) Squeeze-and-excitation networks

  176. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: transformers for image recognition at scale. arXiv, eprint arXiv:2010.11929

  177. Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, Lu T, Luo P, Shao L (2021) Pyramid vision transformer: a versatile backbone for dense prediction without convolutions

  178. Guo M-H, Cai J-X, Liu Z-N, Mu T-J, Martin RR, Hu S-M (2021) PCT: Point cloud transformer. Comput Vis Media 7(2):187–199. https://doi.org/10.1007/s41095-021-0229-5

    Article  Google Scholar 

  179. Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang Z, Tay FE, Feng J, Yan S (2021) Tokens-to-token ViT: training vision transformers from scratch on ImageNet

  180. Zhou D, Kang B, Jin X, Yang L, Lian X, Jiang Z, Hou Q, Feng J (2021) DeepViT: towards deeper vision transformer

  181. Hassani A, Walton S, Shah N, Abuduweili A, Li J, Shi H (2021) Escaping the Big Data Paradigm with Compact Transformers. arxiv:2104.05704

  182. Touvron H, Cord M, Sablayrolles A, Synnaeve G, Jégou H (2021) Going deeper with image transformers

  183. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows

  184. Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers & distillation through attention

  185. Mansour RF (2017) Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed Eng Lett 8:41–57. https://doi.org/10.1007/s13534-017-0047-y

    Article  PubMed  PubMed Central  Google Scholar 

  186. Suchetha M, Ganesh NS, Raman R, Dhas DE (2021) Region of interest-based predictive algorithm for subretinal hemorrhage detection using faster r-cnn. Soft Comput 25:15255–15268. https://doi.org/10.1007/s00500-021-06098-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kumar S (2019) Diabetic retinopathy diagnosis with ensemble deep-learning. In: Proceedings of the 3rd international conference on vision, image and signal processing. https://doi.org/10.1145/3387168.3387206

  188. Zhang A, Lipton ZC, Li M, Smola AJ (2021) Dive into deep learning release 0.17.1

  189. Sridhar S, Sanagavarapu S (2020) Detection and prognosis evaluation of diabetic retinopathy using ensemble deep convolutional neural networks, pp 78–85. https://doi.org/10.1109/IES50839.2020.9231789

  190. Alyoubi WL, Abulkhair MF, Shalash WM (2021) Diabetic retinopathy fundus image classification and lesions localization system using deep learning. Sensors. https://doi.org/10.3390/s21113704

    Article  PubMed  PubMed Central  Google Scholar 

  191. Mongan J, Moy L, Kahn CE (2020) Checklist for artificial intelligence in medical imaging (claim): a guide for authors and reviewers. Radiol Artif Intell 2(2):200029. https://doi.org/10.1148/ryai.2020200029

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RB: Study conception and design, Material preparation, data collection and analysis, First draft, Final approval. AS: Study conception and design, Material preparation, data collection and analysis, Review, Final approval. NG: Study conception and design, Material preparation, data collection and analysis, Review, Final approval.

Corresponding author

Correspondence to Ruchika Bala.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, R., Sharma, A. & Goel, N. Comparative Analysis of Diabetic Retinopathy Classification Approaches Using Machine Learning and Deep Learning Techniques. Arch Computat Methods Eng 31, 919–955 (2024). https://doi.org/10.1007/s11831-023-10002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10002-5

Navigation