Skip to main content

Advertisement

Log in

A Review of the Use of Quasi-random Number Generators to Initialize the Population in Meta-heuristic Algorithms

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Different computational tools require random numbers to operate; this is the case with Meta-heuristic Algorithms (MA's). Many studies in the literature have demonstrated that the spatial distribution of the first generation of candidate solutions has a significant influence on the effectiveness of the MA’s. This article tests and analyzes the effect of various types of initializations, specifically contrasting two classes: Low Discrepancy Sequences (LDS) such as Halton, Sobel, Hammersley, and Latin Hypercube and Pseudo-Random Number Generators (PRNG) initialization processes of popular state−of-the−art algorithms as Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithms (GA), and Stochastic Fractal Search (SFS). Experimental results are compared and analyzed, showing that, like the butterfly effect of chaos theory, small changes in the initialization of an optimization algorithm with random processes of different nature can induce significantly different results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  2. Ahrens JH, Dieter U, Grube A (1970) Pseudo-random numbers. Computing 6(1–2):121–138

    Article  MATH  Google Scholar 

  3. Al Salami NM (2009) Ant colony optimization algorithm. UbiCC J 4(3):823–826

    Google Scholar 

  4. Altinoz OT, Yilmaz AE, Weber GW (2014) Improvement of the gravitational search algorithm by means of low-discrepancy Sobol quasi random-number sequence based initialization. Adv Electr Comput Eng 14(3):55–63

    Article  Google Scholar 

  5. Antonov IA, Saleev V (1979) An economic method of computing lp\(\tau\)-sequences. USSR Comput Math Math Phys 19(1):252–256

    Article  MATH  Google Scholar 

  6. Ashraf A, Pervaiz S, Haider Bangyal W, Nisar K, Ibrahim A, Asri A, Rawat DB et al (2021) Studying the impact of initialization for population-based algorithms with low-discrepancy sequences. Appl Sci 11(17):8190

    Article  Google Scholar 

  7. Batanero C (2015) Understanding randomness: challenges for research and teaching. In: CERME 9-ninth congress of the European Society for Research in Mathematics Education, pp 34–49

  8. Bratley P, Fox BL (1988) Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans Math Softw (TOMS) 14(1):88–100

    Article  MATH  Google Scholar 

  9. Brown L (1967) The conditional level of student’s t test. Ann Math Stat 38(4):1068–1071

    Article  MathSciNet  MATH  Google Scholar 

  10. Coello Coello CA, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36(2):219–236

    Article  Google Scholar 

  11. Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45(3):1–33

    Article  MATH  Google Scholar 

  12. Das S, Suganthan PN (2010) Differential evolution: a survey of the statE−of-thE−art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  13. Diaz-Cortes MA, Ortega-Sánchez N, Hinojosa S, Oliva D, Cuevas E, Rojas R, Demin A (2018) A multi-level thresholding method for breast thermograms analysis using dragonfly algorithm. Infrared Phys Technol 93:346–361

    Article  Google Scholar 

  14. Digehsara PA, Chegini SN, Bagheri A, Roknsaraei MP (2020) An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled halton sequence. Cogent Eng 7(1):1737383

    Article  Google Scholar 

  15. Diwekar UM, Ulas S (2000) Sampling techniques. Kirk-Othmer Encyclopedia of chemical technology

  16. Eckhardt R, Ulam S, Von Neumann J (1987) The Monte Carlo method. Los Alamos Sci 15:131

    Google Scholar 

  17. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Article  Google Scholar 

  18. Fox BL (1986) Algorithm 647: implementation and relative efficiency of quasirandom sequence generators. ACM Trans Math Softw (TOMS) 12(4):362–376

    Article  MATH  Google Scholar 

  19. Genlin J (2004) Survey on genetic algorithm. Comput Appl Softw 2(1):69–73

    Google Scholar 

  20. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Machine Learning

  21. Hansen N, Arnold DV, Auger A (2015) Evolution strategies. Springer handbook of computational intelligence. Springer, New York, pp 871–898

    Google Scholar 

  22. Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51(3):1531–1551

    Article  MATH  Google Scholar 

  23. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  24. Hernandez GR, Navarro MA, Ortega-Sanchez N, Oliva D, Perez-Cisneros M (2020) Failure detection on electronic systems using thermal images and metaheuristic algorithms. IEEE Lat Am Trans 18(08):1371–1380

    Article  Google Scholar 

  25. Hoang ND, Nguyen QL (2018) Metaheuristic optimized edge detection for recognition of concrete wall cracks a comparative study on the performances of Roberts, Prewitt, Canny, and Sobel algorithms. Adv Civil Eng. https://doi.org/10.1155/2018/7163580

    Article  Google Scholar 

  26. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, IEEE. vol 4, pp 1942–1948

  27. Khosiawan Y, Khalfay A, Nielsen I (2018) Scheduling unmanned aerial vehicle and automated guided vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm optimization. Int J Adv Rob Syst 15(1):1729881417754145

    Google Scholar 

  28. Kocis L, Whiten WJ (1997) Computational investigations of low-discrepancy sequences. ACM Trans Math Softw (TOMS) 23(2):266–294

    Article  MATH  Google Scholar 

  29. Kritzer P, Pillichshamnnerf F (2005) Van der corput sequence. Mathematica Pannonica 179:198

    MATH  Google Scholar 

  30. Krömer P, Platoš J, Snášel V (2020) Differential evolution for the optimization of low-discrepancy generalized Halton sequences. Swarm Evol Comput 54:100649

    Article  Google Scholar 

  31. Maciel O, Cuevas E, Navarro MA, Zaldívar D, Hinojosa S (2020) SidE−blotched lizard algorithm: a polymorphic population approach. Appl Soft Comput 88:106039

    Article  Google Scholar 

  32. McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61

    Article  MATH  Google Scholar 

  33. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  34. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  35. Monica T, Rajasekhar A, Pant M, Abraham A (2011) Enhancing the local exploration capabilities of artificial bee colony using low discrepancy Sobol sequence. In: International conference on contemporary computing, Springer. pp 158–168

  36. Murphy RP (2010) Chaos theory. Ludwig von Mises Institute, Auburn

    Google Scholar 

  37. Nguyen TD, Shih MH, Srivastava D, Tirthapura S, Xu B (2021) Stratified random sampling from streaming and stored data. Distrib Parallel Databases 39(3):665–710

    Article  Google Scholar 

  38. Oliva D, Abd El Aziz M, Hassanien AE (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154

    Article  Google Scholar 

  39. Rao RV, Patel V (2013) An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica 20(3):710–720

    Google Scholar 

  40. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  41. Rosli SJ, Rahim HA, Abdul Rani KN, Ngadiran R, Ahmad RB, Yahaya NZ, Abdulmalek M, Jusoh M, Yasin MNM, Sabapathy T et al (2020) A hybrid modified method of the sine cosine algorithm using Latin hypercube sampling with the cuckoo search algorithm for optimization problems. Electronics 9(11):1786

    Article  Google Scholar 

  42. Rostan P, Rostan A (2013) Testing quasi-random versus pseudorandom numbers on bond options pricing. Aestimatio 6:96–115

    Google Scholar 

  43. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–18

    Article  Google Scholar 

  44. Sobol’ IM, Asotsky D, Kreinin A, Kucherenko S (2011) Construction and comparison of high-dimensional Sobol’ generators. Wilmott 2011(56):64–79

    Article  Google Scholar 

  45. Spettel P, Beyer HG, Hellwig M (2018) A covariance matrix self-adaptation evolution strategy for optimization under linear constraints. IEEE Trans Evol Comput 23(3):514–524

    Article  Google Scholar 

  46. Srinivas M, Patnaik LM (1994) Genetic algorithms: a survey. Computer 27(6):17–26

    Article  Google Scholar 

  47. Stein M (1987) Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2):143–151

    Article  MathSciNet  MATH  Google Scholar 

  48. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  49. Uy NQ, Hoai NX, McKay RI, Tuan PM (2007) Initialising PSO with randomised low-discrepancy sequences: the comparative results. In: 2007 IEEE Congress on Evolutionary Computation, IEEE. pp 1985–1992

  50. Wang X, Hickernell FJ (2000) Randomized Halton sequences. Math Comput Model 32(7–8):887–899

    Article  MathSciNet  MATH  Google Scholar 

  51. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  52. Wong TT, Luk WS, Heng PA (1997) Sampling with Hammersley and Halton points. J Graph Tools 2(2):9–24

    Article  Google Scholar 

  53. Woo TC, Liang R (1993) Dimensional measurement of surfaces and their sampling. Comput Aided Des 25(4):233–239

    Article  Google Scholar 

  54. Wu G, Mallipeddi R, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization

  55. Xiong N, Molina D, Ortiz ML, Herrera F (2015) A walk into metaheuristics for engineering optimization: principles, methods and recent trends. Int J Comput Intell Syst 8(4):606–636

    Article  Google Scholar 

  56. Zhang T, Geem ZW (2019) Review of harmony search with respect to algorithm structure. Swarm Evol Comput 48:31–43

    Article  Google Scholar 

  57. Zolghadr-Asli B, Bozorg-Haddad O, Chu X (2018) Crow search algorithm (CSA). In: Advanced optimization by naturE−inspired algorithms. Springer pp 143–149

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The set of functions used, taken from the CEC17 [54], are shown in Table 13 and are presented in that form since every optimization problem must be presented as a black box problem. Notice that the same set of functions was used for 30 and 50 dimensions..

Table 13 The CEC17 benchmark functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, M.A., Oliva, D., Ramos-Michel, A. et al. A Review of the Use of Quasi-random Number Generators to Initialize the Population in Meta-heuristic Algorithms. Arch Computat Methods Eng 29, 5149–5184 (2022). https://doi.org/10.1007/s11831-022-09759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09759-y

Navigation