Skip to main content
Log in

A Comparative Analysis of Hybrid Computational Models Constructed with Swarm Intelligence Algorithms for Estimating Soil Compression Index

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The determination of the compression index (Cc) of clay through oedometer tests is time-consuming and expensive. To replace the practice of conducting laboratory oedometer tests, this study presents a comparative analysis of hybrid machine learning models for estimating the soil Cc based on actual laboratory test data. Ten swarm intelligence algorithms, namely particle swarm optimization, ant colony optimization, artificial bee colony, grey wolf optimizer, moth flame optimizer, whale optimization algorithm, salp swarm algorithm, Harris hawks optimization, slime mould algorithm, and marine predator algorithm, were used to optimize the learning parameters of an artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Subsequently, 20 hybrid ANN and ANFIS models were constructed to obtain the best prediction model. A sum of 700 oedometer test data was acquired from an Indian Railways project to construct and validate the hybrid models. Besides, 30 new oedometer experiments were performed for external validation of the developed hybrid models. Experimental outcomes show that the proposed ANFIS and PSO hybrid model (ANFIS-PSO) attained the most accurate prediction of soil Cc, which is much superior to the developed hybrid ANN and ANFIS models. Based on the experimental results, the proposed ANFIS-PSO model demonstrates high potential as a robust alternative to the actual oedometer test to assist geotechnical engineers in the introductory stage of civil engineering projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kolay PK, Rosmina AB, Shirley Y (2011) Prediction of compression index for tropical soil by using artificial neural network (ANN). In: 13th international conference of the IACMAG, pp 542–547

  2. Huang Y, Chen C, Su D, Wu S (2020) Comparison of leading-industrialisation and crossing-industrialisation economic growth patterns in the context of sustainable development: lessons from China and India. Sustain Dev 28:1077–1085

    Article  Google Scholar 

  3. Mohammed M, Sharafati A, Al-Ansari N, Yaseen ZM (2020) Shallow foundation settlement quantification: application of hybridized adaptive neuro-fuzzy inference system model. Adv Civil Eng 2020:1–14

    Article  Google Scholar 

  4. AS Osman, MD Bolton (2004) A new approach to the estimation of undrained settlement of shallow foundations on soft clay. Eng Pract Perform Soft Depos IS-OSAKA. pp 93–98

  5. Shahir H, Pak A (2010) Estimating liquefaction-induced settlement of shallow foundations by numerical approach. Comput Geotech 37:267–279

    Article  Google Scholar 

  6. Day RW (2010) Foundation engineering handbook: design and construction with the 2009 international building code. McGraw-Hill Education, New York

    Google Scholar 

  7. Mohammadzadeh D, Bolouri Bazaz J, Alavi AH (2014) An evolutionary computational approach for formulation of compression index of fine-grained soils. Eng Appl Artif Intell 33:58–68. https://doi.org/10.1016/j.engappai.2014.03.012

    Article  Google Scholar 

  8. JD Nelson, DK Reichler, JM Cumbers (2006) Parameters for heave prediction by oedometer tests. Unsaturated Soils 2006, pp 951–961

  9. Tien Bui D, Nhu VH, Hoang ND (2018) Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multi-layer perceptron neural network. Adv Eng Inform 38:593–604. https://doi.org/10.1016/j.aei.2018.09.005

    Article  Google Scholar 

  10. Nagaraj TS, Murthy BRS (1985) Prediction of the preconsolidation pressure and recompression index of soils. Geotech Test J 8:199–202

    Article  Google Scholar 

  11. Nishida Y (1956) A brief note on compression index of soil. J Soil Mech Found Div 82:1–14

    Article  Google Scholar 

  12. Koppula SD (1981) Statistical estimation of compression index. Geotech Test J 4:68–73

    Article  Google Scholar 

  13. Terzaghi K, Peck RB, Mesri G (1967) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  14. Skempton AW, Jones OT (1944) Notes on the compressibility of clays. Q J Geol Soc 100:119–135

    Article  Google Scholar 

  15. Kumar G, Jain S, Singh UP (2021) Stock market forecasting using computational intelligence: a survey. Springer, Netherlands. https://doi.org/10.1007/s11831-020-09413-5

    Book  Google Scholar 

  16. Zhang P, Yin ZY, Jin YF (2021) State-of-the-art review of machine learning applications in constitutive modeling of soils. Arch Comput Methods Eng 28:3661–3686. https://doi.org/10.1007/s11831-020-09524-z

    Article  MathSciNet  Google Scholar 

  17. Asteris PG, Rizal FIM, Koopialipoor M, Roussis PC, Ferentinou M, Armaghani DJ, Gordan B (2022) Slope stability classification under seismic conditions using several tree-based intelligent techniques. Appl Sci 12:1753

    Article  Google Scholar 

  18. Onyelowe KC, Jalal FE, Iqbal M, Rehman ZU, Ibe K (2022) Intelligent modeling of unconfined compressive strength (UCS) of hybrid cement-modified unsaturated soil with nanostructured quarry fines inclusion. Innov Infrastruct Solut 7:1–18

    Article  Google Scholar 

  19. Paturi UMR, Cheruku S, Reddy NS (2022) The role of artificial neural networks in prediction of mechanical and tribological properties of composites—a comprehensive review. Springer, Netherlands. https://doi.org/10.1007/s11831-021-09691-7

    Book  Google Scholar 

  20. Bourouis MA, Zadjaoui A, Djedid A (2020) Contribution of two artificial intelligence techniques in predicting the secondary compression index of fine-grained soils. Innov Infrastruct Solut 5:1–11. https://doi.org/10.1007/s41062-020-00348-1

    Article  Google Scholar 

  21. Pham BT, Nguyen MD, Ly H-B, Pham TA, Hoang V, Van Le H, Le T-T, Nguyen HQ, Bui GL (2020) Development of artificial neural networks for prediction of compression coefficient of soft soil. CIGOS 2019. Springer, Cham, pp 1167–1172

    Google Scholar 

  22. Zhang W, Zhang Y, Goh ATC (2017) Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation. Tunn Undergr Sp Technol 64:24–33

    Article  Google Scholar 

  23. Zhang W, Zhang R, Goh ATC (2018) Multivariate adaptive regression splines approach to estimate lateral wall deflection profiles caused by braced excavations in clays. Geotech Geol Eng 36:1349–1363

    Google Scholar 

  24. Zhang W, Zhang R, Wu C, Goh ATC, Lacasse S, Liu Z, Liu H (2020) State-of-the-art review of soft computing applications in underground excavations. Geosci Front 11:1095–1106

    Article  Google Scholar 

  25. Wang L, Zhang W, Chen F (2019) Bayesian approach for predicting soil-water characteristic curve from particle-size distribution data. Energies 12:2992

    Article  Google Scholar 

  26. Emamgholizadeh S, Mohammadi B (2021) New hybrid nature-based algorithm to integration support vector machine for prediction of soil cation exchange capacity. Soft Comput 25:13451–13464

    Article  Google Scholar 

  27. Emadi M, Taghizadeh-Mehrjardi R, Cherati A, Danesh M, Mosavi A, Scholten T (2020) Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sens 12:2234

    Article  Google Scholar 

  28. Mosavi A, Sajedi-Hosseini F, Choubin B, Taromideh F, Rahi G, Dineva AA (2020) Susceptibility mapping of soil water erosion using machine learning models. Water 12:1995

    Article  Google Scholar 

  29. Il Park H, Lee SR (2011) Evaluation of the compression index of soils using an artificial neural network. Comput Geotech 38:472–481

    Article  Google Scholar 

  30. Shi XC, Guo YF (2013) Application of genetic arithmetic and support vector machine in prediction of compression index of clay. Appl Mech Mater 438–439:1167–1170. https://doi.org/10.4028/www.scientific.net/AMM.438-439.1167

    Article  Google Scholar 

  31. Kashefipour SM, Daryaee M (2014) Modeling the compression index for fine soils using an intelligent method. J Biodivers Environ Sci 5:197–204

    Google Scholar 

  32. Kurnaz TF, Dagdeviren U, Yildiz M, Ozkan O (2016) Prediction of compressibility parameters of the soils using artificial neural network. Springerplus. https://doi.org/10.1186/s40064-016-3494-5

    Article  Google Scholar 

  33. Mohammadzadeh D, Bolouri Bazaz J, Vafaee Jani Yazd SH, Alavi AH (2016) Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming. Environ Earth Sci 75:1–11. https://doi.org/10.1007/s12665-015-4889-2

    Article  Google Scholar 

  34. Fikret Kurnaz T, Kaya Y (2018) The comparison of the performance of ELM, BRNN, and SVM methods for the prediction of compression index of clays. Arab J Geosci. https://doi.org/10.1007/s12517-018-4143-9

    Article  Google Scholar 

  35. Pham BT, Nguyen MD, Van Dao D, Prakash I, Ly HB, Le TT, Ho LS, Nguyen KT, Ngo TQ, Hoang V, Son LH, Ngo HTT, Tran HT, Do NM, Van Le H, Ho HL, Tien Bui D (2019) Development of artificial intelligence models for the prediction of compression coefficient of soil: an application of Monte Carlo sensitivity analysis. Sci Total Environ 679:172–184. https://doi.org/10.1016/j.scitotenv.2019.05.061

    Article  Google Scholar 

  36. Taghizadeh-Mehrjardi R, Schmidt K, Toomanian N, Heung B, Behrens T, Mosavi A, Band SS, Amirian-Chakan A, Fathabadi A, Scholten T (2021) Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma 383:114793

    Article  Google Scholar 

  37. Alizadeh Majdi A, Dabiri R, Ganjian N, Ghalandarzadeh A (2019) Determination of the soil compression index (Cc) in clayey soils using shear wave velocity (case study: Tabriz City). Iran J Sci Technol Trans Civ Eng 43:577–588. https://doi.org/10.1007/s40996-018-0209-x

    Article  Google Scholar 

  38. S Alam, S Khuntia, C Patra (2014) Prediction of compression index of clay using artificial neural network. In: International conference on industrial engineering science and applications-NIT, Durgapur

  39. Benbouras MA, Kettab Mitiche R, Zedira H, Petrisor AI, Mezouar N, Debiche F (2019) A new approach to predict the compression index using artificial intelligence methods. Mar Georesour Geotechnol 37:704–720. https://doi.org/10.1080/1064119X.2018.1484533

    Article  Google Scholar 

  40. Danial Mohammadzadeh S, Kazemi SF, Mosavi A, Nasseralshariati E, Tah JHM (2019) Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 4:1–12. https://doi.org/10.3390/infrastructures4020026

    Article  Google Scholar 

  41. Bardhan A, GuhaRay A, Gupta S, Pradhan B, Gokceoglu C (2022) A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of Dedicated Freight Corridor. Transp Geotech 32:100678

    Article  Google Scholar 

  42. Samui P, Hoang ND, Nhu VH, Nguyen ML, Ngo PTT, Bui DT (2019) A new approach of hybrid bee colony optimized neural computing to estimate the soil compression coefficient for a housing construction project. Appl Sci 9:1–18. https://doi.org/10.3390/app9224912

    Article  Google Scholar 

  43. Pham BT, Son LH, Hoang TA, Nguyen DM, Tien Bui D (2018) Prediction of shear strength of soft soil using machine learning methods. CATENA 166:181–191. https://doi.org/10.1016/j.catena.2018.04.004

    Article  Google Scholar 

  44. Xu C, Gordan B, Koopialipoor M, Armaghani DJ, Tahir MM, Zhang X (2019) Improving performance of retaining walls under dynamic conditions developing an optimized ANN based on ant colony optimization technique. IEEE Access 7:94692–94700

    Article  Google Scholar 

  45. Koopialipoor M, Fallah A, Armaghani DJ, Azizi A, Mohamad ET (2019) Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng Comput 35:243–256. https://doi.org/10.1007/s00366-018-0596-4

    Article  Google Scholar 

  46. Ly H-B, Pham BT, Le LM, Le T-T, Le VM, Asteris PG (2021) Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Comput Appl 33:3437–3458

    Article  Google Scholar 

  47. Golafshani EM, Behnood A, Arashpour M (2020) Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer. Constr Build Mater 232:117266. https://doi.org/10.1016/j.conbuildmat.2019.117266

    Article  Google Scholar 

  48. Le LT, Nguyen H, Dou J, Zhou J (2019) A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning. Appl Sci. https://doi.org/10.3390/app9132630

    Article  Google Scholar 

  49. Ojha VK, Abraham A, Snášel V (2017) Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng Appl Artif Intell 60:97–116

    Article  Google Scholar 

  50. Taghizadeh-Mehrjardi R, Emadi M, Cherati A, Heung B, Mosavi A, Scholten T (2021) Bio-inspired hybridization of artificial neural networks: an application for mapping the spatial distribution of soil texture fractions. Remote Sens 13:1025

    Article  Google Scholar 

  51. Ghorbani MA, Deo RC, Kashani MH, Shahabi M, Ghorbani S (2019) Artificial intelligence-based fast and efficient hybrid approach for spatial modelling of soil electrical conductivity. Soil Tillage Res 186:152–164

    Article  Google Scholar 

  52. Mosavi A, Samadianfard S, Darbandi S, Nabipour N, Qasem SN, Salwana E, Band SS (2021) Predicting soil electrical conductivity using multi-layer perceptron integrated with grey wolf optimizer. J Geochem Explor 220:106639

    Article  Google Scholar 

  53. Moazenzadeh R, Mohammadi B, Safari MJS, Chau K (2022) Soil moisture estimation using novel bio-inspired soft computing approaches. Eng Appl Comput Fluid Mech 16:826–840

    Google Scholar 

  54. Raghuram G, Verma A (2018) Dedicated freight corridor: current challenges. World Conference on Transport Research - WCTR 2019 Mumbai 26–31 May 2019

  55. Batur Şahin C, Abualigah L (2021) A novel deep learning-based feature selection model for improving the static analysis of vulnerability detection. Neural Comput Appl 33:14049–14067. https://doi.org/10.1007/s00521-021-06047-x

    Article  Google Scholar 

  56. Abd Elaziz M, Dahou A, Abualigah L, Yu L, Alshinwan M, Khasawneh AM, Lu S (2021) Advanced metaheuristic optimization techniques in applications of deep neural networks: a review. Neural Comput Appl 33:14079–14099. https://doi.org/10.1007/s00521-021-05960-5

    Article  Google Scholar 

  57. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

  58. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  59. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  60. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  61. Rechenberg I (1989) Evolution strategy: nature’s way of optimization. In: optimization: methods and applications, possibilities and limitations. Springer, Berlin, Heidelberg, pp 106–126

    Chapter  Google Scholar 

  62. Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT press, Cambridge

    MATH  Google Scholar 

  63. Atashpaz-Gargari E, Lucas C (2007, September) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. Ieee, pp 4661–4667

  64. Moosavian N, Roodsari BK (2014) Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol Comput 17:14–24

    Article  Google Scholar 

  65. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Des 43:303–315

    Google Scholar 

  66. Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161–185

    Article  Google Scholar 

  67. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  68. Formato RA (2007) Central force optimization. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  69. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (NY) 179:2232–2248

    Article  MATH  Google Scholar 

  70. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci (NY) 540:131–159

    Article  MathSciNet  MATH  Google Scholar 

  71. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  72. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  73. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  74. Mirjalili S, Mohammad S, Lewis A (2014) Advances in engineering software grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  75. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  76. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  77. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  78. Kennedy J, Eberhart R (1995, November). Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol. 4. IEEE, pp 1942–1948

  79. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  80. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  81. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  82. M Dorigo, G Di Caro (1999) Ant colony optimization: a new meta-heuristic, In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), IEEE, pp 1470–1477

  83. Muro C, Escobedo R, Spector L, Coppinger RP (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Processes 88:192–197

    Article  Google Scholar 

  84. Watkins WA, Schevill WE (1979) Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. J Mammal 60:155–163

    Article  Google Scholar 

  85. Goldbogen JA, Friedlaender AS, Calambokidis J, McKenna MF, Simon M, Nowacek DP (2013) Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63:90–100

    Article  Google Scholar 

  86. Armaghani DJ, Asteris PG (2021) A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Springer, London. https://doi.org/10.1007/s00521-020-05244-4

    Book  Google Scholar 

  87. Bhatt AN, Shrivastava N (2022) Application of artificial neural network for internal combustion engines: a state of the art review. Arch Comput Methods Eng 29:897–919. https://doi.org/10.1007/s11831-021-09596-5

    Article  Google Scholar 

  88. Asteris PG, Lemonis ME, Le T-T, Tsavdaridis KD (2021) Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling. Eng Struct 248:113297

    Article  Google Scholar 

  89. Asteris PG, Lourenço PB, Hajihassani M, Adami C-EN, Lemonis ME, Skentou AD, Marques R, Nguyen H, Rodrigues H, Varum H (2021) Soft computing-based models for the prediction of masonry compressive strength. Eng Struct 248:113276

    Article  Google Scholar 

  90. Asteris PG, Lourenço PB, Roussis PC, Adami CE, Armaghani DJ, Cavaleri L, Chalioris CE, Hajihassani M, Lemonis ME, Mohammed AS (2022) Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques. Constr Build Mater 322:126500

    Article  Google Scholar 

  91. Khan MI, Sutanto MH, Khan K, Iqbal M, Bin Napiah M, Zoorob SE, Klemeš JJ, Bokhari A, Rafiq W (2022) Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network. J Clean Prod 340:130840

    Article  Google Scholar 

  92. Zhang P, Yin ZY, Jin YF (2022) Machine learning-based modelling of soil properties for geotechnical design: review, tool development and comparison. Arch Comput Methods Eng 29:1229–1245. https://doi.org/10.1007/s11831-021-09615-5

    Article  Google Scholar 

  93. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  94. Parsajoo M, Armaghani DJ, Asteris PG (2022) A precise neuro-fuzzy model enhanced by artificial bee colony techniques for assessment of rock brittleness index. Neural Comput Appl 34:3263–3281

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Dedicated Freight Corridor of India Limited (DFCCIL) New Delhi, India and officials of Larsen and Toubro Construction, DFCCIL CTP-3(R) Project Site, Ahmedabad, India to provide experimental data and their kind support during the course of this study.

Funding

No external funding has been received.

Author information

Authors and Affiliations

Authors

Contributions

AB: Main author, conceptualization, literature review, model development, statistical analysis, detailing, overall analysis, manuscript writing, and finalization; NK: Manuscript writing, software and analysis; AKA: Review and editing; PS: Guidance; AHG: Detailed review and editing; CG: Detailed review and editing.

Corresponding author

Correspondence to Candan Gokceoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardhan, A., Kardani, N., Alzo’ubi, A.K. et al. A Comparative Analysis of Hybrid Computational Models Constructed with Swarm Intelligence Algorithms for Estimating Soil Compression Index. Arch Computat Methods Eng 29, 4735–4773 (2022). https://doi.org/10.1007/s11831-022-09748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09748-1

Navigation