Skip to main content
Log in

Machine Learning Techniques and Population-Based Metaheuristics for Damage Detection and Localization Through Frequency and Modal-Based Structural Health Monitoring: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Vibration-based damage detection techniques, and particularly frequency and modal-based methods, address the problem of localization and quantification of damage in a structure by using observed changes in its dynamic properties. Most of these procedures are based on an optimal criterion in which the stiffness distribution of an element into a structural system is iteratively updated in order to match the computed natural frequencies with the measured ones at a certain level of deterioration. This paper provides a comprehensive review of the optimization methodologies based on random search procedures that have been employed to find practical solutions in the forward and inverse frequency and modal-based Structural Health Monitoring (SHM) problem. Over the last three decades, the application of machine learning approaches and population-based metaheuristics to solve real-engineering optimization problems has grown massively, especially in the SHM field. Therefore, the literature review provided in this paper is organized into three main sections: (1) Machine learning techniques; (2) Population-based metaheuristics; and (3) coupled methodologies. Finally, the purpose of this paper is to provide the reader with a wider understanding and a critical point of view of frequency and modal-based techniques for structural damage detection, and the various computational methods that have been employed to solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source: Bektas et al. [115])

Fig. 2
Fig. 3

Source: Kim et al. [166])

Fig. 4

Source: Zenzen et al. [190])

Similar content being viewed by others

References

  1. Kannappan L (2008) Damage detection in structures using natural frequency measurements. University of New South Wales

    Google Scholar 

  2. Kim JT, Ryu YS, Cho HM, Stubbs N (2003) Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method. Eng Struct 25:57–67. https://doi.org/10.1016/S0141-0296(02)00118-9

    Article  Google Scholar 

  3. Adams RD, Cawley P, Pye CJ, Stone BJ (1978) A vibration technique for non-destructively assessing the integrity of structures. J Mech Eng Sci 20:93–100. https://doi.org/10.1243/JMES_JOUR_1978_020_016_02

    Article  Google Scholar 

  4. Cawley P, Adams RD (1979) The location of defects in structures from measurements of natural frequencies. J Strain Anal Eng Des 14:49–57. https://doi.org/10.1243/03093247V142049

    Article  Google Scholar 

  5. Hearn G, Testa RB (1991) Modal analysis for damage detection in structures. J Struct Eng 117:3042–3063. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(3042)

    Article  Google Scholar 

  6. Esfandiari A, Bakhtiari-Nejad F, Rahai A, Sanayei M (2009) Structural model updating using frequency response function and quasi-linear sensitivity equation. J Sound Vib 326:557–573. https://doi.org/10.1016/j.jsv.2009.07.001

    Article  Google Scholar 

  7. Casas JR, Aparicio AC (1994) Structural damage identification from dynamic-test data. J Struct Eng 120:2437–2450. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2437)

    Article  Google Scholar 

  8. Kosmatka JB, Ricles JM (1999) Damage detection in structures by modal vibration characterization. J Struct Eng 125:1384–1392. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1384)

    Article  Google Scholar 

  9. Wang X, Hu N, Fukunaga H, Yao ZH (2001) Structural damage identification using static test data and changes in frequencies. Eng Struct 23:610–621. https://doi.org/10.1016/S0141-0296(00)00086-9

    Article  Google Scholar 

  10. Teughels A, Maeck J, De Roeck G (2002) Damage assessment by FE model updating using damage functions. Comput Struct 80:1869–1879. https://doi.org/10.1016/S0045-7949(02)00217-1

    Article  Google Scholar 

  11. Ren W-X, De Roeck G (2002) Structural damage identification using modal data: I—simulation verification. J Struct Eng 128:87–95. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87)

    Article  Google Scholar 

  12. Ren W-X, De Roeck G (2002) Structural damage identification using modal data. II: Test verification. J Struct Eng 128:96–104. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(96)

    Article  Google Scholar 

  13. Chondros TG, Dimarogonas AD (1980) Identification of cracks in welded joints of complex structures. J Sound Vib 69:531–538. https://doi.org/10.1016/0022-460X(80)90623-9

    Article  Google Scholar 

  14. Gudmundson P (1982) Eigenfrequency changes of structures due to cracks, notches or other geometrical changes. J Mech Phys Solids 30:339–353. https://doi.org/10.1016/0022-5096(82)90004-7

    Article  Google Scholar 

  15. Khiem NT, Lien TV (2001) A simplified method for natural frequency analysis of a multiple cracked beam. J Sound Vib 245:737–751. https://doi.org/10.1006/jsvi.2001.3585

    Article  Google Scholar 

  16. Kim J-T, Stubbs N (2003) Crack detection in beam-type structures using frequency data. J Sound Vib 259:145–160. https://doi.org/10.1006/jsvi.2002.5132

    Article  Google Scholar 

  17. Patil DP, Maiti SK (2003) Detection of multiple cracks using frequency measurements. Eng Fract Mech 70:1553–1572. https://doi.org/10.1016/S0013-7944(02)00121-2

    Article  Google Scholar 

  18. Douka E, Bamnios G, Trochidis A (2004) A method for determining the location and depth of cracks in double-cracked beams. Appl Acoust 65:997–1008. https://doi.org/10.1016/j.apacoust.2004.05.002

    Article  Google Scholar 

  19. Qian G-L, Gu S-N, Jiang J-S (1990) The dynamic behaviour and crack detection of a beam with a crack. J Sound Vib 138:233–243. https://doi.org/10.1016/0022-460X(90)90540-G

    Article  Google Scholar 

  20. Cawley P, Ray R (1988) A comparison of the natural frequency changes produced by cracks and slots. J Vib Acoust 110:366–370. https://doi.org/10.1115/1.3269527

    Article  Google Scholar 

  21. Ostachowicz WM, Krawczuk M (1991) Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J Sound Vib 150:191–201. https://doi.org/10.1016/0022-460X(91)90615-Q

    Article  Google Scholar 

  22. Liang RY, Hu J, Choy F (1992) Quantitative NDE technique for assessing damages in beam structures. J Eng Mech 118:1468–1487. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:7(1468)

    Article  Google Scholar 

  23. Hu J, Liang RY (1993) An integrated approach to detection of cracks using vibration characteristics. J Franklin Inst 330:841–853. https://doi.org/10.1016/0016-0032(93)90080-E

    Article  MATH  Google Scholar 

  24. Narkis Y (1994) Identification of crack location in vibrating simply supported beams. J Sound Vib 172:549–558. https://doi.org/10.1006/jsvi.1994.1195

    Article  MATH  Google Scholar 

  25. Shifrin EI, Ruotolo R (1999) Natural frequencies of a beam with an arbitrary number of cracks. J Sound Vib 222:409–423. https://doi.org/10.1006/jsvi.1998.2083

    Article  Google Scholar 

  26. Lee Y-S, Chung M-J (2000) A study on crack detection using eigenfrequency test data. Comput Struct 77:327–342. https://doi.org/10.1016/S0045-7949(99)00194-7

    Article  Google Scholar 

  27. Morassi A (2001) Identification of a crack in a rod based on changes in a pair of natural frequencies. J Sound Vib 242:577–596. https://doi.org/10.1006/jsvi.2000.3380

    Article  Google Scholar 

  28. Joshi A, Madhusudhan BS (1991) A unified approach to free vibration of locally damaged beams having various homogeneous boundary conditions. J Sound Vib 147:475–488. https://doi.org/10.1016/0022-460X(91)90495-6

    Article  Google Scholar 

  29. Liang RY, Choy FK, Hu J (1991) Detection of cracks in beam structures using measurements of natural frequencies. J Franklin Inst 328:505–518. https://doi.org/10.1016/0016-0032(91)90023-V

    Article  MATH  Google Scholar 

  30. Li B, Chen XF, Ma JX, He ZJ (2005) Detection of crack location and size in structures using wavelet finite element methods. J Sound Vib 285:767–782. https://doi.org/10.1016/j.jsv.2004.08.040

    Article  Google Scholar 

  31. Xiaoqing Z, Qiang H, Feng L (2010) Analytical approach for detection of multiple cracks in a beam. J Eng Mech 136:345–357. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:3(345)

    Article  Google Scholar 

  32. Sayyad FB, Kumar B (2012) Identification of crack location and crack size in a simply supported beam by measurement of natural frequencies. J Vib Control 18:183–190. https://doi.org/10.1177/1077546310395979

    Article  MathSciNet  Google Scholar 

  33. Cerri MN, Vestroni F (2000) Detection of damage in beams subjected to diffused cracking. J Sound Vib 234:259–276. https://doi.org/10.1006/jsvi.1999.2887

    Article  Google Scholar 

  34. Lu ZR, Liu JK, Huang M, Xu WH (2009) Identification of local damages in coupled beam systems from measured dynamic responses. J Sound Vib 326:177–189. https://doi.org/10.1016/j.jsv.2009.04.028

    Article  Google Scholar 

  35. Nandwana BP, Maiti SK (1997) Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies. J Sound Vib 203:435–446. https://doi.org/10.1006/jsvi.1996.0856

    Article  Google Scholar 

  36. Davini C, Gatti F, Morassi A (1993) A damage analysis of steel beams. Meccanica 28:27–37. https://doi.org/10.1007/BF00990287

    Article  Google Scholar 

  37. Armon D, Ben-Haim Y, Braun S (1994) Crack detection in beams by rankordering of eigenfrequency shifts. Mech Syst Signal Process 8:81–91. https://doi.org/10.1006/mssp.1994.1006

    Article  Google Scholar 

  38. Sundermeyer JN, Weaver RL (1995) On crack identification and characterization in a beam by non-linear vibration analysis. J Sound Vib 183:857–871. https://doi.org/10.1006/jsvi.1995.0290

    Article  MATH  Google Scholar 

  39. Masoud S, Jarrah MA, Al-Maamory M (1998) Effect of crack depth on the natural frequency of a prestressed fixed–fixed beam. J Sound Vib 214:201–212. https://doi.org/10.1006/jsvi.1997.1541

    Article  Google Scholar 

  40. Boltezar M, Strancar B, Kuhelj A (1998) Identification of transverse crack location in flexural vibrations of free-free beams. J Sound Vib 211:729–734. https://doi.org/10.1006/jsvi.1997.1410

    Article  Google Scholar 

  41. Morassi A, Rollo M (2001) Identification of two cracks in a simply supported beam from minimal frequency measurements. J Vib Control 7:729–739. https://doi.org/10.1177/107754630100700507

    Article  MATH  Google Scholar 

  42. Lele SP, Maiti SK (2002) Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. J Sound Vib 257:559–583. https://doi.org/10.1006/jsvi.2002.5059

    Article  Google Scholar 

  43. Lin HP (2004) Direct and inverse methods on free vibration analysis of simply supported beams with a crack. Eng Struct 26:427–436. https://doi.org/10.1016/j.engstruct.2003.10.014

    Article  Google Scholar 

  44. Chaudhari TD, Maiti SK (2000) A study of vibration of geometrically segmented beams with and without crack. Int J Solids Struct 37:761–779. https://doi.org/10.1016/S0020-7683(99)00054-2

    Article  MATH  Google Scholar 

  45. Chinchalkar S (2001) Determination of crack location in beams using natural frequencies. J Sound Vib 247:417–429. https://doi.org/10.1006/jsvi.2001.3748

    Article  Google Scholar 

  46. Dilena M, Morassi A (2009) Vibrations of steel-concrete composite beams with partially degraded connection and applications to damage detection. J Sound Vib 320:101–124. https://doi.org/10.1016/j.jsv.2008.07.022

    Article  Google Scholar 

  47. Dilena M, Morassi A (2004) Experimental modal analysis of steel concrete composite beams with partially damaged connection. J Vib Control 10:897–913. https://doi.org/10.1177/1077546304041370

    Article  Google Scholar 

  48. Gillich GR, Praisach ZI, Abdel Wahab M, Vasile O (2014) Localization of transversal cracks in sandwich beams and evaluation of their severity. Shock Vib. https://doi.org/10.1155/2014/607125

    Article  Google Scholar 

  49. Hasan WM (1995) Crack detection from the variation of the eigenfrequencies of a beam on elastic foundation. Eng Fract Mech 52:409–421. https://doi.org/10.1016/0013-7944(95)00037-V

    Article  Google Scholar 

  50. Dilena M, Morassi A (2003) Detecting cracks in a longitudinally vibrating beam with dissipative boundary conditions. J Sound Vib 267:87–103. https://doi.org/10.1016/S0022-460X(03)00176-7

    Article  Google Scholar 

  51. Loya JA, Rubio L, Fernández-Sáez J (2006) Natural frequencies for bending vibrations of Timoshenko cracked beams. J Sound Vib 290:640–653. https://doi.org/10.1016/j.jsv.2005.04.005

    Article  Google Scholar 

  52. Nikolakopoulos PG, Katsareas DE, Papadopoulos CA (1997) Crack identification in frame structures. Comput Struct 64:389–406. https://doi.org/10.1016/S0045-7949(96)00120-4

    Article  MATH  Google Scholar 

  53. Greco A, Pau A (2012) Damage identification in Euler frames. Comput Struct 92–93:328–336. https://doi.org/10.1016/j.compstruc.2011.10.007

    Article  Google Scholar 

  54. Labib A, Kennedy D, Featherston CA (2015) Crack localisation in frames using natural frequency degradations. Comput Struct 157:51–59. https://doi.org/10.1016/j.compstruc.2015.05.001

    Article  Google Scholar 

  55. Fraraccio G, Brügger A, Betti R (2008) Identification and damage detection in structures subjected to base excitation. Exp Mech 48:521–528. https://doi.org/10.1007/s11340-008-9124-6

    Article  Google Scholar 

  56. Coppolino RN, Rubin S (1980) Detectability of structural failures in offshore platforms by ambient vibration monitoring. In: Proceedings of the annual offshore technology conference. pp 101–110

  57. Shahrivar F, Bouwkamp JG (1986) Damage detection in offshore platforms using vibration information. J Energy Resour Technol 108:97–106. https://doi.org/10.1115/1.3231263

    Article  Google Scholar 

  58. Stubbs N, Kim JT, Topole K (1992) An efficient and robust algorithm for damage localization in offshore platforms. In: Proceedings of the ASCE 10th structures congress. pp 543–546

  59. Kim HM, Bartkowicz TJ (2001) An experimental study for damage detection using a hexagonal truss. Comput Struct 79:173–182. https://doi.org/10.1016/S0045-7949(00)00126-7

    Article  Google Scholar 

  60. Comanducci G, Ubertini F, Materazzi AL (2015) Structural health monitoring of suspension bridges with features affected by changing wind speed. J Wind Eng Ind Aerodyn 141:12–26. https://doi.org/10.1016/j.jweia.2015.02.007

    Article  Google Scholar 

  61. Roy S, Chakraborty S, Sarkar SK (2006) Damage detection of coupled bridge deck-girder system. Finite Elem Anal Des 42:942–949. https://doi.org/10.1016/j.finel.2006.01.012

    Article  Google Scholar 

  62. Mazurek DF (1988) Monitoring structural integrity of girder bridges through vibration measurement. University of Connecticut

    Google Scholar 

  63. Kim JT, Stubbs N (2003) Nondestructive crack detection algorithm for full-scale bridges. J Struct Eng 129:1358–1366. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1358)

    Article  Google Scholar 

  64. Cerri MN, Ruta GC (2004) Detection of localised damage in plane circular arches by frequency data. J Sound Vib 270:39–59. https://doi.org/10.1016/S0022-460X(03)00482-6

    Article  Google Scholar 

  65. Pau A, Greco A, Vestroni F (2011) Numerical and experimental detection of concentrated damage in a parabolic arch by measured frequency variations. J Vib Control 17:605–614. https://doi.org/10.1177/1077546310362861

    Article  MathSciNet  Google Scholar 

  66. Cerri MN, Dilena M, Ruta GC (2008) Vibration and damage detection in undamaged and cracked circular arches: experimental and analytical results. J Sound Vib 314:83–94. https://doi.org/10.1016/j.jsv.2008.01.029

    Article  Google Scholar 

  67. Springer WT, Lawrence KL, Lawley TJ (1988) Damage assessment based on the structural frequency-response function. Exp Mech 28:34–37. https://doi.org/10.1007/BF02328993

    Article  Google Scholar 

  68. Zimmerman DC, Simmermacher T, Kaouk M (1995) Structural damage detection using frequency response function. In: Proceedings of the 13th international modal analysis conference (IMAC XIII). Nashville, Tennessee, USA, pp 179–185

  69. Park NG, Park YS (2003) Damage detection using spatially incomplete frequency response functions. Mech Syst Signal Process 17:519–532. https://doi.org/10.1006/mssp.2001.1423

    Article  Google Scholar 

  70. Lee U, Jeong W, Cho J (2004) A frequency response function-based damage identification method for cylindrical shell structures. KSME Int J 18:2114–2124. https://doi.org/10.1007/BF02990216

    Article  Google Scholar 

  71. Araújo dos Santos JV, Mota Soares CM, Mota Soares CA, Maia NMM (2005) Structural damage identification in laminated structures using FRF data. Compos Struct 67:239–249. https://doi.org/10.1016/j.compstruct.2004.09.011

    Article  Google Scholar 

  72. Liu X, Lieven NAJ, Escamilla-Ambrosio PJ (2009) Frequency response function shape-based methods for structural damage localisation. Mech Syst Signal Process 23:1243–1259. https://doi.org/10.1016/j.ymssp.2008.10.002

    Article  Google Scholar 

  73. Chatterjee A (2010) Structural damage assessment in a cantilever beam with a breathing crack using higher order frequency response functions. J Sound Vib 329:3325–3334. https://doi.org/10.1016/j.jsv.2010.02.026

    Article  Google Scholar 

  74. Huang Q, Xu YL, Li JC et al (2012) Structural damage detection of controlled building structures using frequency response functions. J Sound Vib 331:3476–3492. https://doi.org/10.1016/j.jsv.2012.03.001

    Article  Google Scholar 

  75. Lin RM (2016) Modelling, detection and identification of flexural crack damages in beams using frequency response functions. Meccanica 51:2027–2044. https://doi.org/10.1007/s11012-015-0350-6

    Article  MathSciNet  MATH  Google Scholar 

  76. Lin RM, Ng TY (2018) Applications of higher-order frequency response functions to the detection and damage assessment of general structural systems with breathing cracks. Int J Mech Sci 148:652–666. https://doi.org/10.1016/j.ijmecsci.2018.08.027

    Article  Google Scholar 

  77. Sampaio RPC, Maia NMM, Silva JMM (1999) Damage detection using the frequency-response-function curvature method. J Sound Vib 226:1029–1042. https://doi.org/10.1006/jsvi.1999.2340

    Article  Google Scholar 

  78. Ratcliffe CP (2000) A frequency and curvature based experimental method for locating damage in structures. J Vib Acoust 122:324–329. https://doi.org/10.1115/1.1303121

    Article  Google Scholar 

  79. Lee U, Shin J (2002) A frequency response function-based structural damage identification method. Comput Struct 80:117–132. https://doi.org/10.1016/S0045-7949(01)00170-5

    Article  Google Scholar 

  80. Owolabi GM, Swamidas ASJ, Seshadri R (2003) Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. J Sound Vib 265:1–22. https://doi.org/10.1016/S0022-460X(02)01264-6

    Article  Google Scholar 

  81. Peng ZK, Lang ZQ, Billings SA (2007) Crack detection using nonlinear output frequency response functions. J Sound Vib 301:777–788. https://doi.org/10.1016/j.jsv.2006.10.039

    Article  Google Scholar 

  82. Peng ZK, Lang ZQ, Chu FL (2008) Numerical analysis of cracked beams using nonlinear output frequency response functions. Comput Struct 86:1809–1818. https://doi.org/10.1016/j.compstruc.2008.01.011

    Article  Google Scholar 

  83. Wang Z, Lin RM, Lim MK (1997) Structural damage detection using measured FRF data. Comput Methods Appl Mech Eng 147:187–197. https://doi.org/10.1016/S0045-7825(97)00013-3

    Article  MATH  Google Scholar 

  84. Thyagarajan SK, Schulz MJ, Pai PF, Chung J (1998) Detecting structural damage using frequency response functions. J Sound Vib 210:162–170. https://doi.org/10.1006/jsvi.1997.1308

    Article  Google Scholar 

  85. Contursi T, Messina A, Williams EJ (1998) A multiple-damage location assurance criterion based on natural frequency changes. J Vib Control 4:619–633. https://doi.org/10.1177/107754639800400505

    Article  Google Scholar 

  86. Messina A, Williams EJ, Contursi T (1998) Structural damage detection by a sensitivity and statistical-based method. J Sound Vib 216:791–808. https://doi.org/10.1006/jsvi.1998.1728

    Article  Google Scholar 

  87. Huynh D, He J, Tran D (2005) Damage location vector: a non-destructive structural damage detection technique. Comput Struct 83:2353–2367. https://doi.org/10.1016/j.compstruc.2005.03.029

    Article  Google Scholar 

  88. Al-Said SM (2008) Crack detection in stepped beam carrying slowly moving mass. JVC/Journal Vib Control 14:1903–1920. https://doi.org/10.1177/1077546307081321

    Article  MathSciNet  MATH  Google Scholar 

  89. Faverjon B, Sinou JJ (2008) Robust damage assessment of multiple cracks based on the frequency response function and the Constitutive Relation Error updating method. J Sound Vib 312:821–837. https://doi.org/10.1016/j.jsv.2007.11.024

    Article  Google Scholar 

  90. Yang Z, Wang L (2010) Structural damage detection by changes in natural frequencies. J Intell Mater Syst Struct 21:309–319. https://doi.org/10.1177/1045389X09350332

    Article  Google Scholar 

  91. Attar M (2012) A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions. Int J Mech Sci 57:19–33. https://doi.org/10.1016/j.ijmecsci.2012.01.010

    Article  Google Scholar 

  92. Maghsoodi A, Ghadami A, Mirdamadi HR (2013) Multiple-crack damage detection in multi-step beams by a novel local flexibility-based damage index. J Sound Vib 332:294–305. https://doi.org/10.1016/j.jsv.2012.09.002

    Article  Google Scholar 

  93. Zhou X-Q, Xia Y, Weng S (2015) L1 regularization approach to structural damage detection using frequency data. Struct Heal Monit 14:571–582. https://doi.org/10.1177/1475921715604386

    Article  Google Scholar 

  94. Wang L, Lie ST, Zhang Y (2016) Damage detection using frequency shift path. Mech Syst Signal Process 66–67:298–313. https://doi.org/10.1016/j.ymssp.2015.06.028

    Article  Google Scholar 

  95. Chen J-C, Garba JA (1988) On-orbit damage assessment for large space structures. AIAA J 26:1119–1126. https://doi.org/10.2514/3.10019

    Article  Google Scholar 

  96. Shen M-HH, Taylor JE (1991) An identification problem for vibrating cracked beams. J Sound Vib 150:457–484. https://doi.org/10.1016/0022-460X(91)90898-T

    Article  Google Scholar 

  97. Kam TY, Lee TY (1992) Detection of cracks in structures using modal test data. Eng Fract Mech 42:381–387. https://doi.org/10.1016/0013-7944(92)90227-6

    Article  Google Scholar 

  98. Lee TY, Kam TY (1993) Detection of crack location via a global minimization approach. Eng Optim 21:147–159. https://doi.org/10.1080/03052159308940972

    Article  Google Scholar 

  99. Hassiotis S, Jeong GD (1993) Assessment of structural damage from natural frequency measurements. Comput Struct 49:679–691. https://doi.org/10.1016/0045-7949(93)90071-K

    Article  Google Scholar 

  100. Vestroni F, Capecchi D (1996) Damage evaluation in cracked vibrating beams using experimental frequencies and finite element models. J Vib Control 2:69–86. https://doi.org/10.1177/107754639600200105

    Article  Google Scholar 

  101. Bicanic N, Chen HP (1997) Damage identification in framed structures using natural frequencies. Int J Numer Methods Eng 40:4451–4468. https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23%3c4451::AID-NME269%3e3.0.CO;2-L

    Article  MATH  Google Scholar 

  102. Morassi A, Rovere N (1997) Localizing a notch in a steel frame from frequency measurements. J Eng Mech 123:422–432. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:5(422)

    Article  Google Scholar 

  103. Hassiotis S (2000) Identification of damage using natural frequencies and Markov parameters. Comput Struct 74:365–373. https://doi.org/10.1016/S0045-7949(99)00034-6

    Article  Google Scholar 

  104. Vestroni F, Capecchi D (2000) Damage detection in beam structures based on frequency measurements. J Eng Mech 126:761–768. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(761)

    Article  Google Scholar 

  105. Sinha JK, Friswell MI, Edwards S (2002) Simplified models for the location of cracks in beam structures using measured vibration data. J Sound Vib 251:13–38. https://doi.org/10.1006/jsvi.2001.3978

    Article  Google Scholar 

  106. Nahvi H, Jabbari M (2005) Crack detection in beams using experimental modal data and finite element model. Int J Mech Sci 47:1477–1497. https://doi.org/10.1016/j.ijmecsci.2005.06.008

    Article  Google Scholar 

  107. Xu GY, Zhu WD, Emory BH (2007) Experimental and numerical investigation of structural damage detection using changes in natural frequencies. J Vib Acoust Trans ASME 129:686–700. https://doi.org/10.1115/1.2731409

    Article  Google Scholar 

  108. Lee J (2009) Identification of multiple cracks in a beam using natural frequencies. J Sound Vib 320:482–490. https://doi.org/10.1016/j.jsv.2008.10.033

    Article  Google Scholar 

  109. Salawu OS (1997) Detection of structural damage through changes in frequency: a review. Eng Struct. https://doi.org/10.1016/S0141-0296(96)00149-6

    Article  Google Scholar 

  110. Fan W, Qiao P (2011) Vibration-based damage identification methods: A review and comparative study. Struct Heal Monit 10:83

    Article  Google Scholar 

  111. Das S, Saha P, Patro SK (2016) Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civ Struct Heal Monit. https://doi.org/10.1007/s13349-016-0168-5

    Article  Google Scholar 

  112. Gomes GF, Mendez YAD, da Silva-Lopes-Alexandrino P et al (2019) A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-018-9273-4

    Article  MathSciNet  Google Scholar 

  113. Adeli H (2001) Neural networks in civil engineering: 1989–2000. Comput Civ Infrastruct Eng. https://doi.org/10.1111/0885-9507.00219

    Article  Google Scholar 

  114. Zou J, Han Y, So SS (2008) Overview of artificial neural networks. Methods Mol Biol

  115. Bektas O, Marshall J, Jones JA (2020) Comparison of computational prognostic methods for complex systems under dynamic regimes: a review of perspectives. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09339-7

    Article  MathSciNet  Google Scholar 

  116. Wu X, Ghaboussi J, Garrett JH (1992) Use of neural networks in detection of structural damage. Comput Struct 42:649–659. https://doi.org/10.1016/0045-7949(92)90132-J

    Article  MATH  Google Scholar 

  117. Tsou P, Shen M-HH (1994) Structural damage detection and identification using neural networks. AIAA J 32:176–183. https://doi.org/10.2514/3.11964

    Article  MATH  Google Scholar 

  118. Masri SF, Nakamura M, Chassiakos AG, Caughey TK (1996) Neural network approach to detection of changes in structural parameters. J Eng Mech 122:350–360. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(350)

    Article  Google Scholar 

  119. Marwala T, Hunt HEM (1999) Fault identification using finite element models and neural networks. Mech Syst Signal Process 13:475–490. https://doi.org/10.1006/mssp.1998.1218

    Article  Google Scholar 

  120. Chang CC, Chang TYP, Xu YG, Wang ML (2000) Structural damage detection using an iterative neural network. J Intell Mater Syst Struct 11:32–42. https://doi.org/10.1106/XU88-UW1T-A6AM-X7EA

    Article  Google Scholar 

  121. Yun CB, Yi JH, Bahng EY (2001) Joint damage assessment of framed structures using a neural networks technique. Eng Struct 23:425–435. https://doi.org/10.1016/S0141-0296(00)00067-5

    Article  Google Scholar 

  122. Zang C, Imregun M (2001) Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. J Sound Vib 242:813–827. https://doi.org/10.1006/jsvi.2000.3390

    Article  MATH  Google Scholar 

  123. Zang C, Imregun M (2001) Combined neural network and reduced FRF techniques for slight damage detection using measured response data. Arch Appl Mech 71:525–536. https://doi.org/10.1007/s004190100154

    Article  MATH  Google Scholar 

  124. Chen Q, Chan YW, Worden K (2003) Structural fault diagnosis and isolation using neural networks based on response-only data. Comput Struct 81:2165–2172. https://doi.org/10.1016/S0045-7949(03)00295-5

    Article  Google Scholar 

  125. Zapico JL, González MP, Worden K (2003) Damage assessment using neural networks. Mech Syst Signal Process 17:119–125. https://doi.org/10.1006/mssp.2002.1547

    Article  Google Scholar 

  126. Sahin M, Shenoi RA (2003) Quantification and localisation of damage in beam-like structures by using artificial neural networks with experimental validation. Eng Struct 25:1785–1802. https://doi.org/10.1016/j.engstruct.2003.08.001

    Article  Google Scholar 

  127. Fang X, Luo H, Tang J (2005) Structural damage detection using neural network with learning rate improvement. Comput Struct 83:2150–2161. https://doi.org/10.1016/j.compstruc.2005.02.029

    Article  Google Scholar 

  128. Ni YQ, Zhou XT, Ko JM (2006) Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks. J Sound Vib 290:242–263. https://doi.org/10.1016/j.jsv.2005.03.016

    Article  Google Scholar 

  129. Wen CM, Hung SL, Huang CS, Jan JC (2007) Unsupervised fuzzy neural networks for damage detection of structures. Struct Control Heal Monit 14:144–161. https://doi.org/10.1002/stc.116

    Article  Google Scholar 

  130. Mehrjoo M, Khaji N, Moharrami H, Bahreininejad A (2008) Damage detection of truss bridge joints using artificial neural networks. Expert Syst Appl 35:1122–1131. https://doi.org/10.1016/j.eswa.2007.08.008

    Article  Google Scholar 

  131. Rosales MB, Filipich CP, Buezas FS (2009) Crack detection in beam-like structures. Eng Struct 31:2257–2264. https://doi.org/10.1016/j.engstruct.2009.04.007

    Article  Google Scholar 

  132. Dackermann U, Li J, Samali B (2010) Dynamic-based damage identification using neural network ensembles and damage index method. Adv Struct Eng 13:1001–1016. https://doi.org/10.1260/1369-4332.13.6.1001

    Article  Google Scholar 

  133. Li J, Dackermann U, Xu Y-L, Samali B (2011) Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Struct Control Heal Monit 18:207–226. https://doi.org/10.1002/stc.369

    Article  Google Scholar 

  134. Beena P, Ganguli R (2011) Structural damage detection using fuzzy cognitive maps and Hebbian learning. Appl Soft Comput 11:1014–1020. https://doi.org/10.1016/j.asoc.2010.01.023

    Article  Google Scholar 

  135. Jiang SF, Zhang CM, Zhang S (2011) Two-stage structural damage detection using fuzzy neural networks and data fusion techniques. Expert Syst Appl 38:511–519. https://doi.org/10.1016/j.eswa.2010.06.093

    Article  Google Scholar 

  136. Samali B, Dackermann U, Li J (2012) Location and severity identification of notch-type damage in a two-storey steel framed structure utilising frequency response functions and artificial neural network. Adv Struct Eng 15:743–757. https://doi.org/10.1260/1369-4332.15.5.743

    Article  Google Scholar 

  137. Bandara RP, Chan THT, Thambiratnam DP (2013) The three-stage artificial neural network method for damage assessment of building structures. Aust J Struct Eng 14:13–25. https://doi.org/10.7158/S12-036.2013.14.1

    Article  Google Scholar 

  138. Dackermann U, Li J, Samali B (2013) Identification of member connectivity and mass changes on a two-storey framed structure using frequency response functions and artificial neural networks. J Sound Vib 332:3636–3653. https://doi.org/10.1016/j.jsv.2013.02.018

    Article  Google Scholar 

  139. Dackermann U, Smith WA, Randall RB (2014) Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks. Struct Heal Monit 13:430–444. https://doi.org/10.1177/1475921714542890

    Article  Google Scholar 

  140. Zhou XT, Ni YQ, Zhang FL (2014) Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network. Math Probl Eng. https://doi.org/10.1155/2014/837963

    Article  Google Scholar 

  141. Aydin K, Kisi O (2014) Damage detection in Timoshenko beam structures by multilayer perceptron and radial basis function networks. Neural Comput Appl 24:583–597. https://doi.org/10.1007/s00521-012-1270-1

    Article  Google Scholar 

  142. Zhou YL, Wahab MA (2017) Damage detection using vibration data and dynamic transmissibility ensemble with auto-associative neural network. Mechanika. https://doi.org/10.5755/j01.mech.23.5.15339

    Article  Google Scholar 

  143. Padil KH, Bakhary N, Hao H (2017) The use of a non-probabilistic artificial neural network to consider uncertainties in vibration-based-damage detection. Mech Syst Signal Process 83:194–209. https://doi.org/10.1016/j.ymssp.2016.06.007

    Article  Google Scholar 

  144. Zenzen R, Khatir S, Belaidi I et al (2020) A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures. Compos Struct 248:112497. https://doi.org/10.1016/j.compstruct.2020.112497

    Article  Google Scholar 

  145. Gogna A, Tayal A (2013) Metaheuristics: review and application. J Exp Theor Artif Intell. https://doi.org/10.1080/0952813X.2013.782347

    Article  Google Scholar 

  146. Caicedo D, Lara-Valencia L, Blandon J, Graciano C (2021) Seismic response of high-rise buildings through metaheuristic-based optimization using tuned mass dampers and tuned mass dampers inerter. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101927

    Article  Google Scholar 

  147. Nigdeli SM, Bekda G, Yang X (2016) Metaheuristics and Optimization in Civil Engineering

  148. Ruotolo R, Surace C (1997) Damage assessment of multiple cracked beams: numerical results and experimental validation. J Sound Vib 206:567–588. https://doi.org/10.1006/jsvi.1997.1109

    Article  Google Scholar 

  149. Friswell MI, Penny JET, Garvey SD (1998) A combined genetic and eigensensitivity algorithm for the location of damage in structures. Comput Struct 69:547–556. https://doi.org/10.1016/S0045-7949(98)00125-4

    Article  MATH  Google Scholar 

  150. Hao H, Xia Y (2002) Vibration-based damage detection of structures by genetic algorithm. J Comput Civ Eng 16:222–229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)

    Article  Google Scholar 

  151. Shim MB, Suh MW (2002) A study on multiobjective optimization technique for inverse and crack identification problems. Inverse Probl Eng 10:441–465. https://doi.org/10.1080/1068276021000008504

    Article  Google Scholar 

  152. Shim MB, Suh MW (2003) Crack identification using evolutionary algorithms in parallel computing environment. J Sound Vib 262:141–160. https://doi.org/10.1016/S0022-460X(02)01031-3

    Article  Google Scholar 

  153. Rao MA, Srinivas J, Murthy BSN (2004) Damage detection in vibrating bodies using genetic algorithms. Comput Struct 82:963–968. https://doi.org/10.1016/j.compstruc.2004.01.005

    Article  Google Scholar 

  154. He RS, Hwang SF (2006) Damage detection by an adaptive real-parameter simulated annealing genetic algorithm. Comput Struct 84:2231–2243. https://doi.org/10.1016/j.compstruc.2006.08.031

    Article  Google Scholar 

  155. Horibe T, Watanabe K (2006) Crack identification of plates using genetic algorithm. JSME Int J Ser A Solid Mech Mater Eng 49:403–410. https://doi.org/10.1299/jsmea.49.403

    Article  Google Scholar 

  156. Koh BH, Dyke SJ (2007) Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data. Comput Struct 85:117–130. https://doi.org/10.1016/j.compstruc.2006.09.005

    Article  Google Scholar 

  157. Vakil-Baghmisheh M-T, Peimani M, Sadeghi MH, Ettefagh MM (2008) Crack detection in beam-like structures using genetic algorithms. Appl Soft Comput 8:1150–1160. https://doi.org/10.1016/j.asoc.2007.10.003

    Article  Google Scholar 

  158. Guo HY, Li ZL (2009) A two-stage method to identify structural damage sites and extents by using evidence theory and micro-search genetic algorithm. Mech Syst Signal Process 23:769–782. https://doi.org/10.1016/j.ymssp.2008.07.008

    Article  Google Scholar 

  159. Singh SK, Tiwari R (2010) Identification of a multi-crack in a shaft system using transverse frequency response functions. Mech Mach Theory 45:1813–1827. https://doi.org/10.1016/j.mechmachtheory.2010.08.007

    Article  MATH  Google Scholar 

  160. Nobahari M, Seyedpoor SM (2011) Structural damage detection using an efficient correlation-based index and a modified genetic algorithm. Math Comput Model 53:1798–1809. https://doi.org/10.1016/j.mcm.2010.12.058

    Article  MATH  Google Scholar 

  161. Meruane V, Heylen W (2011) An hybrid real genetic algorithm to detect structural damage using modal properties. Mech Syst Signal Process 25:1559–1573. https://doi.org/10.1016/j.ymssp.2010.11.020

    Article  Google Scholar 

  162. Panigrahi SK, Chakraverty S, Mishra BK (2013) Damage identification of multistory shear structure from sparse modal information. J Comput Civ Eng 27:1–9. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000189

    Article  Google Scholar 

  163. Naseralavi SS, Gerist S, Salajegheh E, Salajegheh J (2013) Elaborate structural damage detection using an improved genetic algorithm and modal data. Int J Struct Stab Dyn 13:1350024. https://doi.org/10.1142/S0219455413500247

    Article  Google Scholar 

  164. Khaji N, Mehrjoo M (2014) Crack detection in a beam with an arbitrary number of transverse cracks using genetic algorithms. J Mech Sci Technol 28:823–836. https://doi.org/10.1007/s12206-013-1147-y

    Article  Google Scholar 

  165. Seyedpoor SM, Shahbandeh S, Yazdanpanah O (2015) An efficient method for structural damage detection using a differential evolution algorithm-based optimisation approach. Civ Eng Environ Syst 32:230–250. https://doi.org/10.1080/10286608.2015.1046051

    Article  Google Scholar 

  166. Kim N-I, Kim S, Lee J (2019) Vibration-based damage detection of planar and space trusses using differential evolution algorithm. Appl Acoust 148:308–321. https://doi.org/10.1016/j.apacoust.2018.08.032

    Article  Google Scholar 

  167. Begambre O, Laier JE (2009) A hybrid particle swarm optimization: simplex algorithm (PSOS) for structural damage identification. Adv Eng Softw 40:883–891. https://doi.org/10.1016/j.advengsoft.2009.01.004

    Article  MATH  Google Scholar 

  168. Moradi S, Razi P, Fatahi L (2011) On the application of bees algorithm to the problem of crack detection of beam-type structures. Comput Struct 89:2169–2175. https://doi.org/10.1016/j.compstruc.2011.08.020

    Article  Google Scholar 

  169. Seyedpoor SM (2011) Structural damage detection using a multi-stage particle swarm optimization. Adv Struct Eng 14:533–549. https://doi.org/10.1260/1369-4332.14.3.533

    Article  Google Scholar 

  170. Vakil Baghmisheh MT, Peimani M, Sadeghi MH et al (2012) A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams. Appl Soft Comput J 12:2217–2226. https://doi.org/10.1016/j.asoc.2012.03.030

    Article  Google Scholar 

  171. Majumdar A, Maiti DK, Maity D (2012) Damage assessment of truss structures from changes in natural frequencies using ant colony optimization. Appl Math Comput 218:9759–9772. https://doi.org/10.1016/j.amc.2012.03.031

    Article  MATH  Google Scholar 

  172. Mohan SC, Maiti DK, Maity D (2013) Structural damage assessment using FRF employing particle swarm optimization. Appl Math Comput 219:10387–10400. https://doi.org/10.1016/j.amc.2013.04.016

    Article  MathSciNet  MATH  Google Scholar 

  173. Nouri Shirazi MR, Mollamahmoudi H, Seyedpoor SM (2014) Structural damage identification using an adaptive multi-stage pptimization method based on a modified particle swarm algorithm. J Optim Theory Appl 160:1009–1019. https://doi.org/10.1007/s10957-013-0316-6

    Article  MathSciNet  MATH  Google Scholar 

  174. Moezi SA, Zakeri E, Zare A, Nedaei M (2015) On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler-Bernoulli beam. Comput Struct 157:42–50. https://doi.org/10.1016/j.compstruc.2015.05.008

    Article  Google Scholar 

  175. Jena PK, Parhi DR (2015) A modified particle swarm optimization technique for crack detection in cantilever beams. Arab J Sci Eng 40:3263–3272. https://doi.org/10.1007/s13369-015-1661-6

    Article  Google Scholar 

  176. Kaveh A, Zolghadr A (2015) An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes. Adv Eng Softw 80:93–100. https://doi.org/10.1016/j.advengsoft.2014.09.010

    Article  Google Scholar 

  177. Kaveh A (2017) Damage detection in skeletal structures based on CSS optimization using incomplete modal data. Applications of metaheuristic optimization algorithms in civil engineering. Springer, Cham, pp 201–211

    Chapter  Google Scholar 

  178. Moezi SA, Zakeri E, Zare A (2018) Structural single and multiple crack detection in cantilever beams using a hybrid Cuckoo-Nelder-Mead optimization method. Mech Syst Signal Process 99:805–831. https://doi.org/10.1016/j.ymssp.2017.07.013

    Article  Google Scholar 

  179. Khatir S, Dekemele K, Loccufier M, Khatir T, Abdel Wahab M (2018) Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization. Comptes Rendus Mécanique 346:110–120. https://doi.org/10.1016/j.crme.2017.11.008

    Article  Google Scholar 

  180. Mishra M, Barman SK, Maity D, Maiti DK (2019) Ant lion optimisation algorithm for structural damage detection using vibration data. J Civ Struct Heal Monit 9:117–136. https://doi.org/10.1007/s13349-018-0318-z

    Article  Google Scholar 

  181. Gomes GF, da Cunha SS, Ancelotti AC (2019) A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng Comput 35:619–626. https://doi.org/10.1007/s00366-018-0620-8

    Article  Google Scholar 

  182. Fathnejat H, Ahmadi-Nedushan B (2020) An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model. Front Struct Civ Eng 14:907–929. https://doi.org/10.1007/s11709-020-0628-1

    Article  Google Scholar 

  183. Suh MW, Shim MB, Kim MY (2000) Crack identification using hybrid neuro-genetic technique. J Sound Vib 238:617–635. https://doi.org/10.1006/jsvi.2000.3089

    Article  Google Scholar 

  184. Sahoo B, Maity D (2007) Damage assessment of structures using hybrid neuro-genetic algorithm. Appl Soft Comput J 7:89–104. https://doi.org/10.1016/j.asoc.2005.04.001

    Article  Google Scholar 

  185. Perera R, Fang SE, Ruiz A (2010) Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors. Meccanica 45:723–734. https://doi.org/10.1007/s11012-009-9264-5

    Article  MATH  Google Scholar 

  186. Kang F, Li JJ, Xu Q (2012) Damage detection based on improved particle swarm optimization using vibration data. Appl Soft Comput J 12:2329–2335. https://doi.org/10.1016/j.asoc.2012.03.050

    Article  Google Scholar 

  187. Vosoughi AR, Gerist S (2014) New hybrid FE-PSO-CGAs sensitivity base technique for damage detection of laminated composite beams. Compos Struct 118:68–73. https://doi.org/10.1016/j.compstruct.2014.07.012

    Article  Google Scholar 

  188. Aydin K, Kisi O (2015) Applicability of a fuzzy genetic system for crack diagnosis in timoshenko beams. J Comput Civ Eng. https://doi.org/10.1061/(asce)cp.1943-5487.0000385

    Article  Google Scholar 

  189. Betti M, Facchini L, Biagini P (2015) Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms. Meccanica 50:875–886. https://doi.org/10.1007/s11012-014-0085-9

    Article  Google Scholar 

  190. Zenzen R, Belaidi I, Khatir S, Abdel Wahab M (2018) A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm. Comptes Rendus Mec 346:1253–1266. https://doi.org/10.1016/j.crme.2018.09.003

    Article  Google Scholar 

  191. Samir K, Brahim B, Capozucca R, Abdel Wahab M (2018) Damage detection in CFRP composite beams based on vibration analysis using proper orthogonal decomposition method with radial basis functions and cuckoo search algorithm. Compos Struct 187:344–353. https://doi.org/10.1016/j.compstruct.2017.12.058

    Article  Google Scholar 

  192. Khatir S, Abdel Wahab M, Boutchicha D, Khatir T (2019) Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis. J Sound Vib 448:230–246. https://doi.org/10.1016/j.jsv.2019.02.017

    Article  Google Scholar 

  193. Tran-Ngoc H, Khatir S, De Roeck G et al (2019) An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm. Eng Struct 199:109637. https://doi.org/10.1016/j.engstruct.2019.109637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DC: Conceptualization, methodology, formal analysis, investigation, resources, visualization, writing—original draft, supervision, writing—reviewing and editing. LLV: Conceptualization, methodology, formal analysis, investigation, resources, visualization, writing—original draft, supervision, writing—reviewing and editing. YVG: Formal analysis, investigation, resources, visualization, supervision, writing—reviewing and editing.

Corresponding author

Correspondence to Daniel Caicedo.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caicedo, D., Lara-Valencia, L. & Valencia, Y. Machine Learning Techniques and Population-Based Metaheuristics for Damage Detection and Localization Through Frequency and Modal-Based Structural Health Monitoring: A Review. Arch Computat Methods Eng 29, 3541–3565 (2022). https://doi.org/10.1007/s11831-021-09692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09692-6

Navigation