Skip to main content
Log in

A Survey of Learning-Based Intelligent Optimization Algorithms

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

A large number of intelligent algorithms based on social intelligent behavior have been extensively researched in the past few decades, through the study of natural creatures, and applied to various optimization fields. The learning-based intelligent optimization algorithm (LIOA) refers to an intelligent optimization algorithm with a certain learning ability. This is how the traditional intelligent optimization algorithm combines learning operators or specific learning mechanisms to give itself some learning ability, thereby achieving better optimization behavior. We conduct a comprehensive survey of LIOAs in this paper. The research includes the following sections: Statistical analysis about LIOAs, classification of LIOA learning method, application of LIOAs in complex optimization scenarios, and LIOAs in engineering applications. The future insights and development direction of LIOAs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Article  Google Scholar 

  2. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B-Cybern 26(1):29–41

    Article  Google Scholar 

  3. StornR, Price K (1996) Minimizing the real functions of the ICEC'96 contest by differential evolution. In: Proceedings of IEEE international conference on evolutionary computation, IEEE, pp 842–844

  4. KennedyJ, Eberhart R (1995) Particle swarm optimization (PSO). In: Proceedings of IEEE international conference on neural networks, Perth, Australia, pp 1942–1948

  5. Passino KM (2012) Bacterial foraging optimization. IGI Global, Innovations and Developments of Swarm Intelligence Applications, pp 219–234

    Google Scholar 

  6. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  MathSciNet  Google Scholar 

  7. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  9. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Article  Google Scholar 

  10. Yang X-S, Deb S, Cuckoo search via Lévy flights, (2009) World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE 2009:210–214

    Google Scholar 

  11. Yang X-S (2010) A new metaheuristic bat-inspired algorithm, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Springer 2010:65–74

    Google Scholar 

  12. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  13. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic, expert systems with applications 113377

  14. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  15. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  MathSciNet  Google Scholar 

  16. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  17. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183

    Article  Google Scholar 

  18. Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014

    Article  Google Scholar 

  19. Wang G-G, Deb S, Coelho LdS (2015) Elephant herding optimization. In: 2015 3rd international symposium on computational and business intelligence (ISCBI). IEEE, pp 1–5

  20. Wang G-G, Deb S, Gao X-Z, Coelho LDS (2016) A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int J Bio-Inspired Comput 8(6):394–409

    Article  Google Scholar 

  21. Li J, Ying S, Alavi AH, Wang G-G (2020) Elephant herding optimization: variants, hybrids, and applications. Mathematics 8(9):1415

    Article  Google Scholar 

  22. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inform Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  24. Wang H, Yi J-H (2018) An improved optimization method based on krill herd and artificial bee colony with information exchange. Memetic Comput 10(2):177–198

    Article  Google Scholar 

  25. Wang G-G, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9–10):2454–2462

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang G-G, Deb S, Gandomi AH, Alavi AH (2016) Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 177:147–157

    Article  Google Scholar 

  27. Li B, Fan ZT, Zhang XL, Huang D-S (2019) Robust dimensionality reduction via feature space to feature space distance metric learning. Neural Netw 112:1–14

    Article  MATH  Google Scholar 

  28. Liang X, Wu D, Huang D-S (2019) Image Co-Segmentation via Locally Biased Discriminative Clustering. IEEE Trans Knowl Data Eng 31(11):2228–2233

    Article  Google Scholar 

  29. Liang X, Zhu L, Huang D-S (2017) Multi-task ranking SVM for image cosegmentation. Neurocomputing 247:126–136

    Article  Google Scholar 

  30. Wu D, Yang H-W, Huang D-S, Yuan C-A, Qin X, Zhao Y, Zhao X-Y, Sun J-H (2019) Omnidirectional feature learning for person re-identification. IEEE Access 7:28402–28411

    Article  Google Scholar 

  31. Wu D, Zheng S-J, Bao W-Z, Zhang X-P, Yuan C-A, Huang D-S (2019) A novel deep model with multi-loss and efficient training for person re-identification. Neurocomputing 324:69–75

    Article  Google Scholar 

  32. Sang H-Y, Pan Q-K, Duan P-Y, Li J-Q (2015) An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems. J Intell Manuf 29(6):1337–1349

    Article  Google Scholar 

  33. Sang H-Y, Pan Q-K, Li J-Q, Wang P, Han Y-Y, Gao K-Z, Duan P (2019) Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion. Swarm Evol Comput 44:64–73

    Article  Google Scholar 

  34. Pan Q-K, Sang H-Y, Duan J-H, Gao L (2014) An improved fruit fly optimization algorithm for continuous function optimization problems. Knowl-Based Syst 62:69–83

    Article  Google Scholar 

  35. Gao D, Wang G-G, Pedrycz W (2020) Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans Fuzzy Syst 28:3265

    Article  Google Scholar 

  36. Gao D, Wang G-G, Pedrycz W (2020) Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans Fuzzy Syst 28(12):3265–3275

    Article  Google Scholar 

  37. Rizk-Allah RM, El-Sehiemy RA, Wang G-G (2018) A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Appl Soft Comput 63:206–222

    Article  Google Scholar 

  38. Li M, Xiao D, Zhang Y, Nan H (2015) Reversible data hiding in encrypted images using cross division and additive homomorphism. Signal Process: Image Commun 39:234–248

    Google Scholar 

  39. Li M, Guo Y, Huang J, Li Y (2018) Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure. Signal Process: Image Commun 62:164–172

    Google Scholar 

  40. Fan H, Li M, Liu D, Zhang E (2018) Cryptanalysis of a colour image encryption using chaotic APFM nonlinear adaptive filter. Signal Process 143:28–41

    Article  Google Scholar 

  41. Zhang Y, Gong D, Hu Y, Zhang W (2015) Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing 148:150–157

    Article  Google Scholar 

  42. Zhang Y, Song X-F, Gong D-W (2017) A return-cost-based binary firefly algorithm for feature selection. Inform Sci 418–419:561–574

    Article  Google Scholar 

  43. Mao W, He J, Tang J, Li Y (2018) Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network. Adv Mech Eng 10(12):168781401881718

    Article  Google Scholar 

  44. Jian M, Lam K-M, Dong J (2014) Facial-feature detection and localization based on a hierarchical scheme. Inform Sci 262:1–14

    Article  Google Scholar 

  45. Fan L, Xu S, Liu D, Ru Y (2018) Semi-supervised community detection based on distance dynamics. IEEE Access 6:37261–37271

    Article  Google Scholar 

  46. Wang G-G, Chu HE, Mirjalili S (2016) Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp Sci Technol 49:231–238

    Article  Google Scholar 

  47. Wang G, Guo L, Duan H, Liu L, Wang H, Shao M (2012) Path planning for uninhabited combat aerial vehicle using hybrid meta-heuristic DE/BBO algorithm. Adv Sci Eng Med 4(6):550–564

    Article  Google Scholar 

  48. Wang G-G, Cai X, Cui Z, Min G, Chen J (2020) High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans Emerg Top Comput 8(1):20–30

    Google Scholar 

  49. Cui Z, Sun B, Wang G-G, Xue Y, Chen J (2017) A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems. J Parallel Distr Com 103:42–52

    Article  Google Scholar 

  50. Jian M, Lam K-M, Dong J (2014) Illumination-insensitive texture discrimination based on illumination compensation and enhancement. Inform Sci 269:60–72

    Article  MathSciNet  Google Scholar 

  51. Wang G-G, Guo L, Duan H, Liu L, Wang H (2012) The model and algorithm for the target threat assessment based on Elman_AdaBoost strong predictor. Acta Electronica Sinica 40(5):901–906

    Google Scholar 

  52. Jian M, Lam KM, Dong J, Shen L (2015) Visual-patch-attention-aware saliency detection. IEEE Trans Cybern 45(8):1575–1586

    Article  Google Scholar 

  53. Wang G-G, Lu M, Dong Y-Q, Zhao X-J (2016) Self-adaptive extreme learning machine. Neural Comput Appl 27(2):291–303

    Article  Google Scholar 

  54. Mao W, Zheng Y, Mu X, Zhao J (2013) Uncertainty evaluation and model selection of extreme learning machine based on Riemannian metric. Neural Comput Appl 24(7–8):1613–1625

    Google Scholar 

  55. Liu G, Zou J (2018) Level set evolution with sparsity constraint for object extraction. IET Image Proc 12(8):1413–1422

    Article  Google Scholar 

  56. Liu K, Gong D, Meng F, Chen H, Wang G-G (2017) Gesture segmentation based on a two-phase estimation of distribution algorithm. Inf Sci 394–395:88–105

    Article  MathSciNet  Google Scholar 

  57. Rizk-Allah RM, El-Sehiemy RA, Deb S, Wang G-G (2017) A novel fruit fly framework for multi-objective shape design of tubular linear synchronous motor. J Supercomput 73(3):1235–1256

    Article  Google Scholar 

  58. Yi J-H, Xing L-N, Wang G-G, Dong J, Vasilakos AV, Alavi AH, Wang L (2020) Behavior of crossover operators in NSGA-III for large-scale optimization problems. Inf Sci 509:470–487

    Article  MathSciNet  Google Scholar 

  59. Yi J-H, Deb S, Dong J, Alavi AH, Wang G-G (2018) An improved NSGA-III Algorithm with adaptive mutation operator for big data optimization problems. Future Gener Comput Syst 88:571–585

    Article  Google Scholar 

  60. Wang G-G, Tan Y (2019) Improving metaheuristic algorithms with information feedback models. IEEE Trans Cybern 49(2):542–555

    Article  Google Scholar 

  61. Gu Z-M, Wang G-G (2020) Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization. Future Gener Comput Syst 107:49–69

    Article  Google Scholar 

  62. Zhang Y, Wang G-G, Li K, Yeh W-C, Jian M, Dong J (2020) Enhancing MOEA/D with information feedback models for large-scale many-objective optimization. Inform Sci 522:1–16

    Article  MathSciNet  MATH  Google Scholar 

  63. Liu G, Deng M (2018) Parametric active contour based on sparse decomposition for multi-objects extraction. Signal Process 148:314–321

    Article  Google Scholar 

  64. Sun J, Miao Z, Gong D, Zeng X-J, Li J, Wang G-G (2020) Interval multi-objective optimization with memetic algorithms. IEEE Trans Cybern 50(8):3444–3457

    Article  Google Scholar 

  65. Srikanth K, Panwar LK, Panigrahi BK, Herrera-Viedma E, Sangaiah AK, Wang G-G (2018) Meta-heuristic framework: quantum inspired binary grey wolf optimizer for unit commitment problem. Comput Electr Eng 70:243–260

    Article  Google Scholar 

  66. Chen S, Chen R, Wang G-G, Gao J, Sangaiah AK (2018), An adaptive large neighborhood search heuristic for dynamic vehicle routing problems. Comput Electr Eng

  67. Feng Y, Wang G-G (2018) Binary moth search algorithm for discounted 0–1 knapsack problem. IEEE Access 6:10708–10719

    Article  Google Scholar 

  68. Feng Y, Wang G-G, Wang L (2018) Solving randomized time-varying knapsack problems by a novel global firefly algorithm. Eng Comput-Germany 34(3):621–635

    Article  Google Scholar 

  69. Abdel-Basset M, Zhou Y (2018) An elite opposition-flower pollination algorithm for a 0–1 knapsack problem. Int J Bio-Inspired Comput 11(1):46–53

    Article  Google Scholar 

  70. Yi J-H, Wang J, Wang G-G (2016) Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem. Adv Mech Eng 8(1):1–13

    Article  Google Scholar 

  71. Mao W, He J, Li Y, Yan Y (2016) Bearing fault diagnosis with auto-encoder extreme learning machine: a comparative study. Proc Inst Mech Eng C J Mech Eng Sci 231(8):1560–1578

    Article  Google Scholar 

  72. Mao W, Feng W, Liang X (2019) A novel deep output kernel learning method for bearing fault structural diagnosis. Mech Syst Signal Process 117:293–318

    Article  Google Scholar 

  73. Feng H-M (2006) Self-generation RBFNs using evolutional PSO learning. Neurocomputing 70(1–3):241–251

    Article  Google Scholar 

  74. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  75. Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inform Sci 181(20):4699–4714

    Article  MathSciNet  Google Scholar 

  76. Xia X, Liu J, Hu Z (2014) An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space. Appl Soft Comput 23:76–90

    Article  Google Scholar 

  77. Lim WH, Mat Isa NA (2014) Teaching and peer-learning particle swarm optimization. Appl Soft Comput 18:39–58

    Article  Google Scholar 

  78. Lim WH, Mat Isa NA (2014) Bidirectional teaching and peer-learning particle swarm optimization. Inform Sci 280:111–134

    Article  Google Scholar 

  79. Hu Z, Bao Y, Xiong T (2014) Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression. Appl Soft Comput 25:15–25

    Article  Google Scholar 

  80. Chen Z-Y, Kuo RJ (2015) Immunological algorithm-based neural network learning for sales forecasting. Appl Artif Intell 29(9):904–922

    Article  Google Scholar 

  81. Chen D, Zou F, Lu R, Wang P (2016) Learning backtracking search optimisation algorithm and its application. Inform Sci 376:71–94

    Article  Google Scholar 

  82. Gong YJ, Li JJ, Zhou Y, Li Y, Chung HSH, Shi YH, Zhang J (2016) Genetic learning particle swarm optimization. IEEE Trans Cybern 46(10):2277–2290

    Article  Google Scholar 

  83. Chen G, Douch CIJ, Zhang M (2016) Accuracy-based learning classifier systems for multistep reinforcement learning: a fuzzy logic approach to handling continuous inputs and learning continuous actions. IEEE Trans Evol Comput 20(6):953–971

    Article  Google Scholar 

  84. Song Z, Peng J, Li C, Liu PX (2017) A simple brain storm optimization algorithm with a periodic quantum learning strategy. IEEE Access 6:19968–19983

    Article  Google Scholar 

  85. Mei Y, Tan G, Liu Z (2017) An improved brain-inspired emotional learning algorithm for fast classification. Algorithms 10(2):70

    Article  MathSciNet  MATH  Google Scholar 

  86. Yu X, Estevez C (2018) Adaptive, multiswarm comprehensive learning particle swarm optimization. Information 9(7):173

    Article  Google Scholar 

  87. Li X-L, He X-D (2014) A hybrid particle swarm optimization method for structure learning of probabilistic relational models. Inform Sci 283:258–266

    Article  Google Scholar 

  88. Gheisari S, Meybodi MR (2016) BNC-PSO: structure learning of Bayesian networks by Particle Swarm Optimization. Inform Sci 348:272–289

    Article  MathSciNet  MATH  Google Scholar 

  89. Contaldi C, Vafaee F, Nelson PC (2018) Bayesian network hybrid learning using an elite-guided genetic algorithm. Artif Intell Rev 52(1):245–272

    Article  Google Scholar 

  90. Alonso JI, de la Ossa L, Gámez JA, Puerta JM (2018) On the use of local search heuristics to improve GES-based Bayesian network learning. Appl Soft Comput 64:366–376

    Article  Google Scholar 

  91. Shen X-N, Minku LL, Marturi N, Guo Y-N, Han Y (2017) A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling. Inform Sci 428:1–29

    Article  MathSciNet  Google Scholar 

  92. Samma H, Mohamad-Saleh J, Suandi SA, Lahasan B (2020) Q-learning-based simulated annealing algorithm for constrained engineering design problems. Neural Comput Appl 32(9):5147–5161

    Article  Google Scholar 

  93. Sadhu AK, Konar A, Bhattacharjee T, Das S (2018) Synergism of firefly algorithm and Q-learning for robot arm path planning. Swarm Evol Comput 43:50–68

    Article  Google Scholar 

  94. Marandi F, FatemiGhomi SMT (2019) Network configuration multi-factory scheduling with batch delivery: a learning-oriented simulated annealing approach. Comput Ind Eng 132:293–310

    Article  Google Scholar 

  95. Liu J, Wang Q, He C, Jaffrès-Runser K, Xu Y, Li Z, Xu Y (2020) QMR:Q-learning based multi-objective optimization Routing protocol for flying ad hoc networks. Comput Commun 150:304–316

    Article  Google Scholar 

  96. Li J, Xiao D-D, Lei H, Zhang T, Tian T (2020) Using cuckoo search algorithm with Q-learning and genetic operation to solve the problem of logistics distribution center location. Mathematics 8(2):149

    Article  Google Scholar 

  97. Jiang Z, Gu J, Fan W, Liu W, Zhu B (2018) Q-learning approach to coordinated optimization of passenger inflow control with train skip-stopping on a urban rail transit line. Comput Ind Eng 127:1131–1142

    Article  Google Scholar 

  98. Hsieh Y-Z, Su M-C (2016) A Q-learning-based swarm optimization algorithm for economic dispatch problem. Neural Comput Appl 27(8):2333–2350

    Article  Google Scholar 

  99. Ding D, Fan X, Zhao Y, Kang K, Yin Q, Zeng J (2020) Q-learning based dynamic task scheduling for energy-efficient cloud computing. Future Gener Comput Syst 108:361–371

    Article  Google Scholar 

  100. Das PK, Behera HS, Panigrahi BK (2016) Intelligent-based multi-robot path planning inspired by improved classical Q-learning and improved particle swarm optimization with perturbed velocity. Eng Sci Technol Int J 19(1):651–669

    Google Scholar 

  101. Arin A, Rabadi G (2017) Integrating estimation of distribution algorithms versus Q-learning into meta-RaPS for solving the 0–1 multidimensional knapsack problem. Comput Ind Eng 112:706–720

    Article  Google Scholar 

  102. Ahmadi E, Goldengorin B, Süer GA, Mosadegh H (2018) A hybrid method of 2-TSP and novel learning-based GA for job sequencing and tool switching problem. Appl Soft Comput 65:214–229

    Article  Google Scholar 

  103. Xie J, Chen W, Dai H, Liu S, Ai W (2019) A distributed cooperative learning algorithm based on zero-gradient-sum strategy using radial basis function network. Neurocomputing 323:244–255

    Article  Google Scholar 

  104. Maitra M, Chatterjee A (2008) A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst Appl 34(2):1341–1350

    Article  Google Scholar 

  105. Ma K, Liu X, Li G, Hu S, Yang J, Guan X (2019) Resource allocation for smart grid communication based on a multi-swarm artificial bee colony algorithm with cooperative learning. Eng Appl Artif Intell 81:29–36

    Article  Google Scholar 

  106. Ding G, Dong F, Zou H (2019) Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding. Appl Soft Comput 84:105704

    Article  Google Scholar 

  107. Boryczka U, Kozak J (2015) Enhancing the effectiveness of Ant Colony Decision Tree algorithms by co-learning. Appl Soft Comput 30:166–178

    Article  Google Scholar 

  108. Alexandridis A, Chondrodima E, Sarimveis H (2016) Cooperative learning for radial basis function networks using particle swarm optimization. Appl Soft Comput 49:485–497

    Article  Google Scholar 

  109. Shahrabi J, Adibi MA, Mahootchi M (2017) A reinforcement learning approach to parameter estimation in dynamic job shop scheduling. Comput Ind Eng 110:75–82

    Article  Google Scholar 

  110. Hou Y, Ong Y-S, Feng L, Zurada JM (2017) An evolutionary transfer reinforcement learning framework for multiagent systems. IEEE Trans Evol Comput 21(4):601–615

    Article  Google Scholar 

  111. Emary E, Zawbaa HM, Grosan C (2017) Experienced gray wolf optimization through reinforcement learning and neural networks. IEEE Trans Neural Netw Learn Syst 29(3):681–694

    Article  MathSciNet  Google Scholar 

  112. Chen C-H, Liu C-B (2017) Reinforcement learning-based differential evolution with cooperative coevolution for a compensatory neuro-fuzzy controller. IEEE Trans Neural Netw Learn Syst 29(10):4719–4729

    Article  Google Scholar 

  113. CardosoBora T, CoccoMariani V, dos SantosCoelho L (2019) Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl Therm Eng 146:688–700

    Article  Google Scholar 

  114. Cao Z, Lin C, Zhou M, Huang R (2019) Scheduling semiconductor testing facility by using cuckoo search algorithm with reinforcement learning and surrogate modeling. IEEE Trans Autom Sci Eng 16(2):825–837

    Article  Google Scholar 

  115. Bora TC, Lebensztajn L, Coelho LDS (2012) Non-dominated sorting genetic algorithm based on reinforcement learning to optimization of broad-band reflector antennas satellite. IEEE Trans Magn 48(2):767–770

    Article  Google Scholar 

  116. Almahdi S, Yang SY (2019) A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement learning. Expert Syst Appl 130:145–156

    Article  Google Scholar 

  117. Abed-alguni BH (2017) Action-selection method for reinforcement learning based on cuckoo search algorithm. Arab J Sci Eng 43(12):6771–6785

    Article  Google Scholar 

  118. Wu QH, Liao HL (2013) Function optimisation by learning automata. Inform Sci 220:379–398

    Article  MathSciNet  Google Scholar 

  119. Hashemi AB, Meybodi MR (2011) A note on the learning automata based algorithms for adaptive parameter selection in PSO. Appl Soft Comput 11(1):689–705

    Article  Google Scholar 

  120. Dai C, Wang Y, Ye M, Xue X, Liu H (2015) An orthogonal evolutionary algorithm with learning automata for multiobjective optimization. IEEE Trans Cybern 46(12):3306–3319

    Article  Google Scholar 

  121. Balusu N, Pabboju S, Narsimha G (2019) An Intelligent channel assignment approach for minimum interference in wireless mesh networks using learning automata and genetic algorithms. Wirel Pers Commun 106(3):1293–1307

    Article  Google Scholar 

  122. Anari B, Akbari Torkestani J, Rahmani AM (2018) A learning automata-based clustering algorithm using ant swarm intelligence. Expert Systems 35(6):e12310

    Article  Google Scholar 

  123. Zuo X, Zhang G, Tan W (2014) Self-adaptive learning PSO-based deadline constrained task scheduling for hybrid iaaS cloud. IEEE Trans Autom Sci Eng 11(2):564–573

    Article  Google Scholar 

  124. Xue Y, Zhuang Y, Ni T, Ni S, Wen X (2014) Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem. J Syst Eng Electron 25(1):59–68

    Article  Google Scholar 

  125. Xiao-li L, Li L-H, Zhang B-L, Guo Q-J (2013) Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation. Neurocomputing 118:179–190

    Article  Google Scholar 

  126. Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q (2011) Self-adaptive learning based particle swarm optimization. Inform Sci 181(20):4515–4538

    Article  MathSciNet  MATH  Google Scholar 

  127. Wang S, Zhang H, Zhang Y, Zhou A (2020) Adaptive population structure learning in evolutionary multi-objective optimization. Soft Comput 24:10025–10042

    Article  Google Scholar 

  128. Wang F, Zhang H, Li K, Lin Z, Yang J, Shen X (2018) A hybrid particle swarm optimization algorithm using adaptive learning strategy. Inform Sci 436:162–177

    Article  MathSciNet  Google Scholar 

  129. Sun J, Zhang H, Zhou A, Zhang Q, Zhang K (2019) A new learning-based adaptive multi-objective evolutionary algorithm. Swarm Evol Comput 44:304–319

    Article  Google Scholar 

  130. Li C, Yang S, Nguyen TT (2011) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Cybern B Cybern 42(3):627–646

    Google Scholar 

  131. Gu Q, Hao X (2018) Adaptive iterative learning control based on particle swarm optimization. J Supercomput 76(5):3615–3622

    Article  Google Scholar 

  132. Birjali M, Beni-Hssane A, Erritali M (2018) A novel adaptive e-learning model based on Big Data by using competence-based knowledge and social learner activities. Appl Soft Comput 69:14–32

    Article  Google Scholar 

  133. Bahmani-Firouzi B, Farjah E, Azizipanah-Abarghooee R (2013) An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties. Energy 50:232–244

    Article  Google Scholar 

  134. Wei W, Zhou J, Chen F, Yuan H (2016) Constrained differential evolution using generalized opposition-based learning. Soft Comput 20(11):4413–4437

    Article  Google Scholar 

  135. Sun L, Chen S, Xu J, Tian Y (2019) Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation. Complexity 2019:4182148

    Article  Google Scholar 

  136. Shekhawat S, Saxena A (2019) Development and applications of an intelligent crow search algorithm based on opposition based learning. ISA Trans. https://doi.org/10.1016/j.isatra.2019.1009.1004

    Article  Google Scholar 

  137. Sharma TK, Pant M (2017) Opposition based learning ingrained shuffled frog-leaping algorithm. J Comput Sci 21:307–315

    Article  MathSciNet  Google Scholar 

  138. Park S-Y, Kim Y-J, Kim J-J, Lee J-J (2014) Speeded-up cuckoo search using opposition-based learning. In: 2014 14th international conference on control, automation and systems (ICCAS 2014). IEEE, pp 535–539

  139. Oliva D, AbdElaziz M (2020) An improved brainstorm optimization using chaotic opposite-based learning with disruption operator for global optimization and feature selection. Soft Comput 24:14051

    Article  Google Scholar 

  140. Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23

    Article  Google Scholar 

  141. Ma X, Liu F, Qi Y, Gong M, Yin M, Li L, Jiao L, Wu J (2014) MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocomputing 146:48–64

    Article  Google Scholar 

  142. Liu H, Xu G, Ding G, Li D (2014) Integrating opposition-based learning into the evolution equation of bare-bones particle swarm optimization. Soft Comput 19(10):2813–2836

    Article  Google Scholar 

  143. Gupta S, Deep K (2019) An efficient grey wolf optimizer with opposition-based learning and chaotic local search for integer and mixed-integer optimization problems. Arab J Sci Eng 44(8):7277–7296

    Article  Google Scholar 

  144. Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230

    Article  Google Scholar 

  145. Guo Z, Wang S, Yue X, Yang H (2017) Global harmony search with generalized opposition-based learning. Soft Comput 21(8):2129–2137

    Article  Google Scholar 

  146. Gao XZ, Wang X, Ovaska SJ, Zenger K (2012) A hybrid optimization method of harmony search and opposition-based learning. Eng Optim 44(8):895–914

    Article  Google Scholar 

  147. Feng Y, Wang G-G, Dong J, Wang L (2018) Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0–1 knapsack problem. Comput Electr Eng 67:454–468

    Article  Google Scholar 

  148. Ahandani MA, Alavi-Rad H (2015) Opposition-based learning in shuffled frog leaping: an application for parameter identification. Inform Sci 291:19–42

    Article  Google Scholar 

  149. Ahandani MA (2016) Opposition-based learning in the shuffled bidirectional differential evolution algorithm. Swarm Evol Comput 26:64–85

    Article  Google Scholar 

  150. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172

    Article  Google Scholar 

  151. Zhang X, Wang X, Kang Q, Cheng J (2019) Differential mutation and novel social learning particle swarm optimization algorithm. Inform Sci 480:109–129

    Article  Google Scholar 

  152. Liu Z-Z, Chu D-H, Song C, Xue X, Lu B-Y (2016) Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition. Inform Sci 326:315–333

    Article  Google Scholar 

  153. Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inform Sci 291:43–60

    Article  MathSciNet  MATH  Google Scholar 

  154. Cai Y, Liao J, Wang T, Chen Y, Tian H (2016) Social learning differential evolution. Inform Sci 433:464–509

    MathSciNet  Google Scholar 

  155. Zhan Z-H, Zhang J, Li Y, Shi Y-H (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847

    Article  Google Scholar 

  156. Xiong G, Shi D (2018) Orthogonal learning competitive swarm optimizer for economic dispatch problems. Appl Soft Comput 66:134–148

    Article  Google Scholar 

  157. Peng Y, Lu B-L (2015) Hybrid learning clonal selection algorithm. Inform Sci 296:128–146

    Article  Google Scholar 

  158. Liu R, Wang L, Ma W, Mu C, Jiao L (2013) Quadratic interpolation based orthogonal learning particle swarm optimization algorithm. Nat Comput 13(1):17–37

    Article  MathSciNet  MATH  Google Scholar 

  159. Li X-T, Yin M-H (2012) Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method. Chin Phys B 21(5):050507

    Article  Google Scholar 

  160. Li X, Wang J, Yin M (2013) Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput Appl 24(6):1233–1247

    Article  Google Scholar 

  161. Lei Y-X, Gou J, Wang C, Cai Y-Q, Luo W (2017) Improved differential evolution with a modified orthogonal learning strategy. IEEE Access 5:9699–9716

    Article  Google Scholar 

  162. Darwish A, Ezzat D, Hassanien AE (2020) An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis. Swarm Evol Comput 52:100616

    Article  Google Scholar 

  163. Bai W, Eke I, Lee KY (2017) An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control Eng Pract 61:163–172

    Article  Google Scholar 

  164. Ferri C, Flach P, Hernández-Orallo J (2004) Delegating classifiers. In: Proceedings of 21th international conference on machine leaning (ICML-2004). Omnipress, Alberta, pp 106–110

  165. Thathachar MA, Sastry PS (2002) Varieties of learning automata: an overview . IEEE Trans Syst Man Cybern B (Cybern) 32(6):711–722

    Article  Google Scholar 

  166. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: A survey. J Artif Intell Res 4:237–285

    Article  Google Scholar 

  167. Cao Z, Wang L (2019) An active learning brain storm optimization algorithm with a dynamically changing cluster cycle for global optimization. Cluster Comput 22(4):1413–1429

    Article  Google Scholar 

  168. Gao WF, Huang LL, Liu SY, Dai C (2015) Artificial bee colony algorithm based on information learning. IEEE Trans Cybern 45(12):2827–2839

    Article  Google Scholar 

  169. Lin A, Sun W, Yu H, Wu G, Tang H (2018) Global genetic learning particle swarm optimization with diversity enhancement by ring topology. Swarm Evol Comput 44:571–583

    Article  Google Scholar 

  170. Deb S, Gao X-Z, Tammi K, Kalita K, Mahanta P (2020) A new teaching–learning-based chicken swarm optimization algorithm. Soft Comput 24(7):5313–5331

    Article  Google Scholar 

  171. Das SP, Padhy S (2015) A novel hybrid model using teaching–learning-based optimization and a support vector machine for commodity futures index forecasting. Int J Mach Learn Cybern 9(1):97–111

    Article  Google Scholar 

  172. Cheng T, Chen M, Fleming PJ, Yang Z, Gan S (2016) A novel hybrid teaching learning based multi-objective particle swarm optimization. Neurocomputing 222:11–25

    Article  Google Scholar 

  173. Chen X, Tianfield H, Mei C, Du W, Liu G (2017) Biogeography-based learning particle swarm optimization. Soft Comput 21(24):7519–7541

    Article  Google Scholar 

  174. Chen D, Zou F, Wang J, Yuan W (2015) SAMCCTLBO: a multi-class cooperative teaching–learning-based optimization algorithm with simulated annealing. Soft Comput 20(5):1921–1943

    Article  Google Scholar 

  175. Bhandari AK, Kumar IV (2019) A context sensitive energy thresholding based 3D Otsu function for image segmentation using human learning optimization. Appl Soft Comput 82:105570

    Article  Google Scholar 

  176. Li W, Wang G-G (2021) Elephant herding optimization using dynamic topology and biogeography-based optimization based on learning for numerical optimization. Eng Comput (in press)

  177. Qin Q, Cheng S, Zhang Q, Li L, Shi Y (2015) Particle swarm optimization with interswarm interactive learning strategy. IEEE Trans Cybern 46(10):2238–2251

    Article  Google Scholar 

  178. Kai Z, Jinchun S, Ke N, Song L (2016) Lagrange interpolation learning particle swarm optimization. PLoS ONE 11(4):e0154191

    Article  Google Scholar 

  179. Heidari AA, Aljarah I, Faris H, Chen H, Luo J, Mirjalili S (2020) An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput Appl 32:5185–5211

    Article  Google Scholar 

  180. Li J, Li Y-x, Tian S-s, Xia J-l (2020) An improved cuckoo search algorithm with self-adaptive knowledge learning. Neural Comput Appl 32:11967–11997

    Article  Google Scholar 

  181. Chen D, Zou F, Lu R, Li S (2018) Backtracking search optimization algorithm based on knowledge learning. Inform Sci 473:202–226

    Article  MathSciNet  Google Scholar 

  182. Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2012) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36(3):735–748

    Article  Google Scholar 

  183. Vafashoar R, Meybodi MR (2019) A multi-population differential evolution algorithm based on cellular learning automata and evolutionary context information for optimization in dynamic environments. Appl Soft Comput 88:106009

    Article  Google Scholar 

  184. Vafashoar R, Meybodi MR (2018) Cellular learning automata based bare bones PSO with maximum likelihood rotated mutations. Swarm Evol Comput 44:680–694

    Article  Google Scholar 

  185. Branke J, Greco S, Slowinski R, Zielniewicz P (2015) Learning value functions in interactive evolutionary multiobjective optimization. IEEE Trans Evol Comput 19(1):88–102

    Article  MATH  Google Scholar 

  186. Zhong Y, Lin J, Wang L, Zhang H (2018) Discrete comprehensive learning particle swarm optimization algorithm with Metropolis acceptance criterion for traveling salesman problem. Swarm Evol Comput 42:77–88

    Article  Google Scholar 

  187. Yu X, Zhang X (2017) Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems. PLoS ONE 12(2):e0172033

    Article  MathSciNet  Google Scholar 

  188. Yu X, Zhang X (2014) Enhanced comprehensive learning particle swarm optimization. Appl Math Comput 242:265–276

    MathSciNet  MATH  Google Scholar 

  189. Mahadevan K, Kannan PS (2010) Comprehensive learning particle swarm optimization for reactive power dispatch. Appl Soft Comput 10(2):641–652

    Article  Google Scholar 

  190. Lynn N, Suganthan PN (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol Comput 24:11–24

    Article  Google Scholar 

  191. Lin A, Sun W, Yu H, Wu G, Tang H (2019) Adaptive comprehensive learning particle swarm optimization with cooperative archive. Appl Soft Comput 77:533–546

    Article  Google Scholar 

  192. Lin A, Sun W (2018) Multi-leader comprehensive learning particle swarm optimization with adaptive mutation for economic load dispatch problems. Energies 12(1):116

    Article  Google Scholar 

  193. Lei Z, Gao S, Gupta S, Cheng J, Yang G (2020) An aggregative learning gravitational search algorithm with self-adaptive gravitational constants. Expert Syst Appl 152:113396

    Article  Google Scholar 

  194. Gülcü Ş, Kodaz H (2015) A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization. Eng Appl Artif Intell 45:33–45

    Article  Google Scholar 

  195. Al-Obeidat F, Belacel N, Carretero JA, Mahanti P (2010) Differential evolution for learning the classification method PROAFTN. Knowl-Based Syst 23(5):418–426

    Article  Google Scholar 

  196. Wang Y, Li H-X, Huang T, Li L (2014) Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl Soft Comput 18:232–247

    Article  Google Scholar 

  197. Jiang Q, Wang L, Cheng J, Zhu X, Li W, Lin Y, Yu G, Hei X, Zhao J, Lu X (2017) Multi-objective differential evolution with dynamic covariance matrix learning for multi-objective optimization problems with variable linkages. Knowl-Based Syst 121:111–128

    Article  Google Scholar 

  198. Almaraashi M, John R, Hopgood A, Ahmadi S (2016) Learning of interval and general type-2 fuzzy logic systems using simulated annealing: theory and practice. Inform Sci 360:21–42

    Article  Google Scholar 

  199. Xu G, Cui Q, Shi X, Ge H, Zhan Z-H, Lee HP, Liang Y, Tai R, Wu C (2019) Particle swarm optimization based on dimensional learning strategy. Swarm Evol Comput 45:33–51

    Article  Google Scholar 

  200. Xiao S, Wang W, Wang H, Tan D, Wang Y, Yu X, Wu R (2019) An improved artificial bee colony algorithm based on elite strategy and dimension learning. Mathematics 7(3):289

    Article  Google Scholar 

  201. Hafiz F, Swain A, Patel N, Naik C (2018) A two-dimensional (2-D) learning framework for Particle Swarm based feature selection. Pattern Recogn 76:416–433

    Article  Google Scholar 

  202. Yu K, Liang JJ, Qu BY, Cheng Z, Wang H (2018) Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl Energy 226:408–422

    Article  Google Scholar 

  203. Xu G, Liu B, Song J, Xiao S, Wu A (2019) Multiobjective sorting-based learning particle swarm optimization for continuous optimization. Nat Comput 18(2):313–331

    Article  MathSciNet  Google Scholar 

  204. Duan M, Yang H, Liu H, Chen J (2018) A differential evolution algorithm with dual preferred learning mutation. Appl Intell 49(2):605–627

    Article  Google Scholar 

  205. Zhang A, Sun G, Ren J, Li X, Wang Z, Jia X (2016) A dynamic neighborhood learning-based gravitational search algorithm. IEEE Trans Cybern 48(1):436–447

    Article  Google Scholar 

  206. Cao L, Xu L, Goodman ED (2018) A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems. Inform Sci 453:463–485

    Article  MathSciNet  Google Scholar 

  207. Ye W, Feng W, Fan S (2017) A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl Soft Comput 61:832–843

    Article  Google Scholar 

  208. Cai Z, Gu J, Luo J, Zhang Q, Chen H, Pan Z, Li Y, Li C (2019) Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst Appl 138:112814

    Article  Google Scholar 

  209. Xia X, Tang Y, Wei B, Gui L (2019) Dynamic multi-swarm particle swarm optimization based on elite learning. IEEE Access 7:184849–184865

    Article  Google Scholar 

  210. Lv L, Zhao J, Wang J, Fan T (2018) Multi-objective firefly algorithm based on compensation factor and elite learning. Future Gener Comput Syst 91:37–47

    Article  Google Scholar 

  211. Lim WH, Mat Isa NA (2014) An adaptive two-layer particle swarm optimization with elitist learning strategy. Inform Sciences 273:49–72

    Article  MathSciNet  Google Scholar 

  212. Chang R-I, Lin S-Y, Hung Y (2012) Particle swarm optimization with query-based learning for multi-objective power contract problem. Expert Syst Appl 39(3):3116–3126

    Article  Google Scholar 

  213. Chang R-I, Hsu H-M, Lin S-Y, Chang C-C, Ho J-M (2017) Query-based learning for dynamic particle swarm optimization. IEEE Access 5:7648–7658

    Article  Google Scholar 

  214. Huang H, Qin H, Hao Z, Lim A (2012) Example-based learning particle swarm optimization for continuous optimization. Inform Sci 182(1):125–138

    Article  MathSciNet  MATH  Google Scholar 

  215. Wang Q, Zhou Y, Zhang W, Tang Z, Chen X (2020) Adaptive sampling using self-paced learning for imbalanced cancer data pre-diagnosis. Expert Syst Appl 152:113334

    Article  Google Scholar 

  216. Li H, Gong M, Wang C, Miao Q (2019) Pareto self-paced learning based on differential evolution. IEEE Trans Cybern https://doi.org/10.1109/TCYB.2019.2935762

    Article  Google Scholar 

  217. Gong M, Li H, Meng D, Miao Q, Liu J (2018) Decomposition-based evolutionary multi-objective optimization to self-paced learning. IEEE Trans Evol Comput 23(2):288–302

    Article  Google Scholar 

  218. Chen C, Wang P, Dong H, Wang X (2019) Hierarchical learning water cycle algorithm. Appl Soft Comput 86:105935

    Article  Google Scholar 

  219. Zhu T, Hao Y, Luo W, Ning H (2017) Learning enhanced differential evolution for tracking optimal decisions in dynamic power systems. Appl Soft Comput 67:812–821

    Article  Google Scholar 

  220. Zhang Q, Liu L (2019) Whale optimization algorithm based on lamarckian learning for global optimization problems. IEEE Access 7:36642–36666

    Article  Google Scholar 

  221. Sun Y, Gao Y (2019) A multi-objective particle swarm optimization algorithm based on gaussian mutation and an improved learning strategy. Mathematics 7(2):148

    Article  Google Scholar 

  222. Peng B, Zhang Y, Lü Z, Cheng T, Glover F (2020) A learning-based memetic algorithm for the multiple vehicle pickup and delivery problem with LIFO loading. Comput Ind Eng 142:106241

    Article  Google Scholar 

  223. Nitisiri K, Gen M, Ohwada H (2019) A parallel multi-objective genetic algorithm with learning based mutation for railway scheduling. Comput Ind Eng 130:381–394

    Article  Google Scholar 

  224. Li W, Wang G-G, Alavi AH (2020) Learning-based elephant herding optimization algorithm for solving numerical optimization problems. Knowl-Based Syst 195:105675

    Article  Google Scholar 

  225. Gong YJ, Zhang J, Zhou Y (2017) Learning multimodal parameters: a bare-bones niching differential evolution approach. IEEE Trans Neural Netw Learn Syst 29(7):2944–2959

    Google Scholar 

  226. Dora S, Sundaram S, Sundararajan N (2018) An interclass margin maximization learning algorithm for evolving spiking neural network. IEEE Trans Cybern 49(3):989–999

    Article  Google Scholar 

  227. Chu X, Wu T, Weir JD, Shi Y, Niu B, Li L (2018) Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective. Neural Comput Appl 32:1789–1809

    Article  Google Scholar 

  228. Cheng TCE, Kuo W-H, Yang D-L (2013) Scheduling with a position-weighted learning effect based on sum-of-logarithm-processing-times and job position. Inform Sci 221:490–500

    Article  MathSciNet  MATH  Google Scholar 

  229. Chen X, Chau V, Xie P, Sterna M, Błażewicz J (2017) Complexity of late work minimization in flow shop systems and a particle swarm optimization algorithm for learning effect. Comput Ind Eng 111:176–182

    Article  Google Scholar 

  230. Antonelli M, Ducange P, Marcelloni F (2014) A fast and efficient multi-objective evolutionary learning scheme for fuzzy rule-based classifiers. Inform Sci 283:36–54

    Article  MathSciNet  MATH  Google Scholar 

  231. Korte B, Vygen J, Korte B, Vygen J (2012) Combinatorial optimization. Springer, New York

    Book  MATH  Google Scholar 

  232. Bertsekas DP (1982) Constrained optimization and Lagrange multiplier methods. Academic Press, London

    MATH  Google Scholar 

  233. Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41576011, No. U1706218, No. 41706010, and No. 61503165).

Funding

The authors confirm that there is no source of funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gai-Ge Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, GG. & Gandomi, A.H. A Survey of Learning-Based Intelligent Optimization Algorithms. Arch Computat Methods Eng 28, 3781–3799 (2021). https://doi.org/10.1007/s11831-021-09562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09562-1

Navigation