Skip to main content
Log in

Enhancing the performance of cuckoo search algorithm using orthogonal learning method

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The cuckoo search algorithm is a simple and effective global optimization algorithm. It has been successfully applied to solve a wide range of real-world optimization problem. In this paper, we use a new search strategy based on orthogonal learning strategy to enhance the exploitation ability of the basic cuckoo search algorithm. In order to verify the performance of our approach, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than or at least comparable to state-of-the-art approaches from literature when considering the quality of the solution obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suman B (2004) Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem. Comput Chem Eng 8:1849–1871

    Article  Google Scholar 

  2. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. Evol Comput 1:82–87

    Google Scholar 

  3. Martí L, García J, Berlangaa A, Coello Coellob CA, Molin JM (2011) MB-GNG: addressing drawbacks in multi-objective optimization estimation of distribution algorithms. Operat Res Lett. doi:10.1016/j.orl.2011.01.002

    Google Scholar 

  4. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73

    Article  Google Scholar 

  5. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  6. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  7. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous space. J Global Optim 11:341–359

    Article  MATH  MathSciNet  Google Scholar 

  8. Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12(1):107–125

    Article  Google Scholar 

  9. Yang XS, Deb S (2009), Cuckoo search via levy flights. In: World congress on nature & biologically inspired computing (NaBIC 2009). IEEE Publication, USA, pp 210–214

  10. Yang XS, Deb S (2010) Engineering optimisation by Cuckoo search. Int J Math Modell Numer Optim 1(4):330–343

    MATH  Google Scholar 

  11. Walton S, Hassan O, Morgan K, Brown MR (2011) Modified cuckoo search: a new gradient free optimisation algorithm Chaos. Solitons Fractals 44:710–718

    Article  Google Scholar 

  12. Gandomi AH, Yang XS, Alavi AH (2011), Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Engineering with Computers, 27

  13. Layeb A (2011) A novel quantum inspired cuckoo search for knapsack problems. Int J Bio Inspired Comput 3:297–305

    Google Scholar 

  14. Tuba M, Subotic M, Stanarevic N (2011), Modified cuckoo search algorithm for unconstrained optimization problems, Proceedings of the 5th European conference on european computing conference (ECC’11), pp 263–268

  15. Goghrehabadi A, Ghalambaz M, Vosough A (2011) A hybrid power series: Cuckoo search optimization algorithm to electrostatic deflection of micro fixed–fixed actuators. Int J Multidiscip Sci Eng 2(4):22–26

    Google Scholar 

  16. Zhang Q, Leung YW (1999) Orthogonal genetic algorithm for multimedia multicast routing. IEEE Trans Evol Comput 3:53–62

    Article  Google Scholar 

  17. Gong WY, Cai ZH, Jiang LX (2008) Enhancing the performance of differential evolution using orthogonal design method. Appl Math Comput 206(1):56–69

    Article  MATH  Google Scholar 

  18. Leung YW, Wang Y (2001) An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans Evol Comput 5:41–53

    Article  Google Scholar 

  19. Tsai JT, Liu TK, Chou JH (2004) Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Trans Evol Comput 8:365–377

    Article  Google Scholar 

  20. Wang YP, Dang CY (2007) An evolutionary algorithm for global optimization based on level-set evolution and latin squares. IEEE Trans Evol Comput 11:579–595

    Article  Google Scholar 

  21. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  22. Lee CY, Yao X (2004) Evolutionary programming using mutations based on the levy probability distribution. IEEE Trans Evol Comput 8(1):1–13

    Article  Google Scholar 

  23. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  24. Hansen N, Ostermeier A (2001) Completely derandomized self adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  25. Garcia-Martinez C, Lozano M, Herrera F, Molina D, Sanchez AM (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Operat Res 185:1088–1113

    Article  MATH  Google Scholar 

  26. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  27. Yang Z, Tang K, Yao X (2008), Self-adaptive differential evolution with neighborhood search. In: Proceedings of the 2008 IEEE congress on evolutionary computation (CEC2008), Hongkong, China, pp 1110–1116

  28. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):647–657

    Article  Google Scholar 

  29. Wang Y, Cai ZX, Zhang QF (2011) Enhancing the search ability of differential evolution through orthogonal crossover. Inform Sci 18(1):153–177

    Google Scholar 

Download references

Acknowledgments

This research is fully supported by Opening Fund of Top Key Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University under Grant No. ZSDZZZZXK37 and the Fundamental Research Funds for the Central Universities Nos. 11CXPY010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wang, J. & Yin, M. Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput & Applic 24, 1233–1247 (2014). https://doi.org/10.1007/s00521-013-1354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1354-6

Keywords

Navigation