Skip to main content
Log in

Effects of exogenous methyl jasmonate-induced resistance in Populus × euramericana ‘Nanlin895’ on the performance and metabolic enzyme activities of Clostera anachoreta

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Methyl jasmonate (MeJA) is a plant chemical elicitor that has been used to artificially induce chemical defense responses and trigger induced resistance against a broad range of arthropod herbivores. This study assessed the effects of exogenous MeJA on the growth performance, chemical detoxification, and antioxidant enzyme activities of Clostera anachoreta. After feeding C. anachoreta with 10−5 mol/L MeJA solution-treated Populus × euramericana ‘Nanlin895’ leaves, we measured the larval and pupal development time, pupal weight, eclosion rate, fecundity, and nutritional physiology of the adults. We also measured superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, which are reactive oxygen species (ROS) scavengers, and glutathione S-transferase (GST) and carboxylesterase (CarE) activities, which are probably involved in the metabolism of induced plant allelochemicals. Methyl jasmonate (MeJA) treatment reduced larval performance in terms of prolonged developmental time of larvae and pupae and decreased growth rates, but had little effect on larval nutrition physiology. The activities of the SOD and POD antioxidant enzymes increased, but CAT activity declined at 36 and 48 h after C. anachoreta had fed on MeJA-treated leaves. The GST and CarE detoxification enzymes both were induced after the larvae had fed on MeJA-treated leaves. These results suggest that exogenous application of MeJA elicited induced resistance in Populus × euramericana ‘Nanlin895’ against C. anachoreta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80(5):1713–1723

    Article  Google Scholar 

  • Ahmad S (1992) Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem Ecol Syst 20:269–296

    Article  CAS  Google Scholar 

  • Ahmad S, Pardini RS (1990) Antioxidant defense of the cabbage looper, Trichoplusia ni: enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin. Photochem Photobiol 15:305–311

    Article  Google Scholar 

  • Ahn JE, Salzman RA, Braunagel SC et al (2004) Functional roles of specific bruchid protease isoforms in adaptation to a soybean protease inhibitor. Insect Mol Biol 13:649–657

    Article  CAS  PubMed  Google Scholar 

  • Asperen VK (1962) A study of housefly esterases by means of a sensitive colorimetric method. J Insect Physiol 8(4):414–416

    Google Scholar 

  • Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16(5):249–257

    Article  PubMed  Google Scholar 

  • Barbehenn RV (2002) Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. J Chem Ecol 28(7):1329–1347

    Article  CAS  PubMed  Google Scholar 

  • Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67(8):886–890

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV et al (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8(2):e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champigny MJ, Cameron RK (2009) Action at a distance: long-distance signals in induced resistance. Adv Bot Res 51:123–171

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chapman RF (1998) The insects: structure and function, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14(2):169–176

    Article  CAS  PubMed  Google Scholar 

  • Délano-Frier JP, Martínez-Gallardo NA, Martínez-de LVO et al (2004) The effect of exogenous jasmonic acid on induced resistance and productivity in amaranth (Amaranthus hypochondriacus) is influenced by environmental conditions. J Chem Ecol 30(5):1001–1034

    Article  PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci 87(19):7713–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedderwitz F, Nordlander G, Ninkovic V et al (2016) Effects of jasmonate-induced resistance in conifer plants on the feeding behaviour of a bark-chewing insect, Hylobius abietis. J Pest Sci 89(1):97–105

    Article  Google Scholar 

  • Felton GW, Duffey SS (1991) Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses. J Chem Ecol 17(9):1715–1732

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29:187–197

    Article  CAS  PubMed  Google Scholar 

  • Feng YJ, Wang JW, Luo S, Fan H, Jin Q (2012) Costs of jasmonic acid induced defense in above ground and below ground parts of corn (Zea mays L.). J Chem Ecol 38(8):984–991

    Article  PubMed  Google Scholar 

  • Graves AD, Holsten EH, Ascerno ME et al (2008) Protection of spruce from colonization by the bark beetle, Ips perturbatus, in Alaska. Forest Ecol Manag 256(11):1825–1839

    Article  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemming JDC, Lindroth RL (2000) Effects of phenolic glycosides and protein on gypsy moth (Lepidoptera: Lymantriidae) and forest tent Caterpillar (Lepidoptera: Lasiocampidae) performance and detoxication activities. Environmental Entomology 29(6):1108–1115

    Article  CAS  Google Scholar 

  • Hu Z, Zhang W, Shen Y et al (2009) Activities of lipoxygenase and phenylalanine ammonia lyase in poplar leaves induced by insect herbivory and volatiles. J For Res 20(4):372–376

    Article  CAS  Google Scholar 

  • Kao CH, Hung CF, Sun CN (1989) Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. J Econ Entomol 82(5):1299–1304

    Article  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Krishnan N, Kodrik D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52:11–20

    Article  CAS  PubMed  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    Article  PubMed  Google Scholar 

  • Liang ZP, Zhang XX, Song AD et al (2006) Biology of Clostera anachoreta and its control methods. Chin Bull Entomol 43:147–152

    Google Scholar 

  • Lindroth RL, Bloomer MS (1991) Biochemical ecology of the forest tent caterpillar: responses to dietary protein and phenolic glycosides. Oecologia 86(3):408–413

    Article  PubMed  Google Scholar 

  • Liu Q, Zhou Y, Chen J et al (2015) Defensive responses of Populus deltoides 895 seedlings against exogenous methyl jasmonate. Pak J Bot 47(1):177–188

    CAS  Google Scholar 

  • Lundborg L, Fedderwitz F, Björklund N et al (2016) Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis. Phytochemistry 130:99–105

    Article  CAS  PubMed  Google Scholar 

  • Lv M, Sun HH, Wang LH et al (2012) Effects of secondary metabolites on activities of glutathione S-transferases, carboxylesterase in aphid. Chin Agric Sci Bull 28(3):253–256

    Google Scholar 

  • Martin JA, Solla A, Garcia-Vallejo MC et al (2012) Chemical changes in Ulmus minor xylem tissue after salicylic acid or carvacrol treatments are associated with enhanced resistance to Ophiostoma novo-ulmi. Phytochemistry 83:104–109

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic SM, Pflugmacher S, James KJ et al (2004) Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat Toxicol 68(2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Omer AD, Thaler JS, Granett J et al (2000) Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J Econ Entomol 93(3):840–845

    Article  CAS  PubMed  Google Scholar 

  • Poelman EH, Broekgaarden C, Van Loon JJA et al (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17(14):3352–3365

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Lehmann J et al (1994) JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci 91(15):7012–7016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigsby CM, Showalter DN, Herms DA et al (2015) Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations. J Insect Physiol 78:47–54

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Chalmers JA, Raj S et al (2005) Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143(4):566–577

    Article  PubMed  Google Scholar 

  • Rohwer CL, Erwin JE (2008) Horticultural applications of jasmonates. J Hortic Sci Biotechnol 83(3):283–304

    Article  CAS  Google Scholar 

  • Schaller A, Stintzi A (2008) Jasmonate biosynthesis and signaling for induced plant defense against herbivory. Induced plant resistance to herbivory. Springer, Netherlands, pp 349–366

    Google Scholar 

  • Scott IM, Thaler JS, Scott JG (2010) Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defense in tomato. J Chem Ecol 36(5):490–499

    Article  CAS  PubMed  Google Scholar 

  • Simons L, BultmanTL Sullivan T (2008) Effects of methyl jasmonate and an endophytic fungus on plant resistance to insect herbivores. J Chem Ecol 34(12):1511–1517

    Article  CAS  PubMed  Google Scholar 

  • Stout MJ, Brovont RA, Duffey SS (1998) Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J Chem Ecol 24(6):945–963

    Article  CAS  Google Scholar 

  • Tan CW, Lo JC, Yadav J et al (2011) Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura fab. performance. J Asia-Pac Entomol 14(3):263–269

    Article  CAS  Google Scholar 

  • Tang F, Fu YY, Ye JR (2015) The effect of methyl salicylate on the induction of direct and indirect plant defense mechanisms in poplar (Populus × euramericana ‘Nanlin 895’). J Plant Interact 10(1):93–100

    Article  CAS  Google Scholar 

  • Thaler JS, Stout MJ, Karban R et al (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22(10):1767–1781

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Stout MJ, Karban R et al (2001) Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol Entomol 26(3):312–324

    Article  Google Scholar 

  • Turlings TC, Loughrin JH, Mccall PJ et al (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci 92(10):4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldbauer GP (1968) The consumption and utilization of food by insects. Adv Insect Physiol 5:229–288

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19(2):195–216

    CAS  PubMed  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71(1–3):3–17

    Article  CAS  Google Scholar 

  • Wan Z, Li Y, Liu M et al (2015) Natural infectious behavior of the urediniospores of Melampsora larici-populina on poplar leaves. J For Res 26(1):225–231

    Article  CAS  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2(8):302–307

    Article  Google Scholar 

  • Weinhold LC, Ahmad S, Pardini RS (1990) Insect glutathione S-transferase: a predictor of allelochemical and oxidative stress. Comp Biochem Physiol B 95:355–363

    Article  Google Scholar 

  • Williams L, Rodriguez-Saona C, Castle SC et al (2008) EAG-active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid. J Chem Ecol 34(9):1190–1201

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhang Y, Huang Q et al (2015) Analysis of key genes of jasmonic acid mediated signal pathway for defense against insect damages by comparative transcriptome sequencing. Sci Rep 5:16500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YT, Zhang YL, Chen SX et al (2015) Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer. BMC Genom 16(1):224

    Article  Google Scholar 

  • Zhu-Salzman K, Zeng R (2015) Insect response to plant defensive protease inhibitors. Annu Rev Entomol 60:233–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province(BK20131421) and the Priority Academic Program Development (PAPD) of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Dejun.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest. All of the authors agree to submit this paper. The manuscript has not been previously published in any language anywhere and it is not under simultaneous consideration or in press by another journal.

Additional information

Handling Editor: William B. Walker III.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tianzi, G., Congcong, Z., Changyu, C. et al. Effects of exogenous methyl jasmonate-induced resistance in Populus × euramericana ‘Nanlin895’ on the performance and metabolic enzyme activities of Clostera anachoreta . Arthropod-Plant Interactions 12, 247–255 (2018). https://doi.org/10.1007/s11829-017-9564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9564-y

Keywords

Navigation