Skip to main content
Log in

Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated mutagenesis of haploid inducer genes in Pak-choi plants (Brassica rapa ssp. chinensis)

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Pak-choi (Brassica rapa ssp. chinensis) is a popular vegetative crop in southern China, East Asia, and Southeast Asia. Owing to the threat of climate change, rapid breeding strategies for vegetable cultivars that are tolerant to abiotic and biotic stresses are required. Thus, the rapid fixation of useful agronomic traits using doubled haploid technology is urgent. The haploid-inducer gene is key to doubled haploidization. Two known CENH3 and pPLAIIγ genes, in which altered or partially deleted forms lead to haploid induction, were selected, and direct editing of Pak-choi CENH3 and pPLAIIγ genes (BcCENH3 and BcpPLAIIγ) was conducted using an Agrobacterium-mediated CRISPR/Cas9 system. First, BcCENH3 and BcpPLAIIγ genes were characterized by analyzing the spatial expression patterns and subcellular localization. The CENH3 expression levels in carpels and pPLAIIγ in various parts of Pak-choi flowers were higher than those of other parts. BcCENH3 and BcpPLAIIγ proteins targeted in the nucleus and plasma membrane, respectively. Whole plants were successfully regenerated from the shoot apical meristem (SAM) regions of Pak-choi seedlings using the optimized procedure and culture conditions. The regeneration results of SAM explants after Agrobacterium-mediated transformation of constructs expressing CRISPR/Cas9 and BcCENH3 or BcpPLAIIγ sgRNAs confirmed four independent BcCENH3-targeted transgenic lines with 2.1%, 1.8%, 1.8%, and 1.7% INDEL frequencies, and three independent BcpPLAIIγ-targeted transgenic lines with 24.5%, 33.7%, and 33.0% INDEL frequencies. Thus, our results suggested the possibility of developing transgenic Pak-choi lines by applying the CRISPR/Cas9 genome editing technology to BcCENH3 and BcpPLAIIγ as two haploid-inducer genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets supporting the conclusions of this article are included in the article and supplementary files.

References

  • Barnabas B, Obert B, Kovacs G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Rep 18:858–862

    Article  CAS  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  CAS  PubMed  Google Scholar 

  • Britt AB, Kuppu S (2016) An emerging player in haploid induction technology. Front Plant Sci 7:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132:3227–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Greer MS, Weselake RJ (2013) Plant phospholipase A: advances in molecular biology, biochemistry, and cellular function. Biomol Concepts 4:527–532

    Article  CAS  PubMed  Google Scholar 

  • Chuong PV, Pauls KP, Beversdorf WD (1987) Protoplast Culture and plant-regeneration from brassica–carinata braun. Plant Cell Rep 6:67–69

    Article  CAS  PubMed  Google Scholar 

  • Fazhan Qiu YL, Li Y, Liu Y, Wang L, Zheng Y (2014) Morphological, cellular, and molecular evidence of chromosome random elimination in vivo upon haploid induction in maize. Curr Plant Biol 1:83–90

    Article  Google Scholar 

  • Feng C, Yuan J, Bai H, Liu YL, Su HD, Liu Y, Shi LD, Gao Z, Birchler JA, Han FP (2020) The deposition of CENH3 in maize is stringently regulated. Plant J 102:6–17

    Article  CAS  PubMed  Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Gil-Humanes J, Barro F (2009) Production of doubled haploids in Brassica. Ada Haploid Product Higher Plants. https://doi.org/10.1007/978-1-4020-8854-4_4

    Article  Google Scholar 

  • Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Berges H, Beydon G, Bayle V, Barret P, Comadran J, Martinant JP, Rogowsky PM, Widiez T (2017a) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilles LM, Martinant JP, Rogowsky PM, Widiez T (2017b) Haploid induction in plants. Curr Biol 27:R1095–R1097

    Article  CAS  PubMed  Google Scholar 

  • Heckmann S, Lermontova I, Berckmans B, De Veylder L, Baumlein H, Schubert I (2011) The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J 68:646–656

    Article  CAS  PubMed  Google Scholar 

  • Holk A, Rietz S, Zahn M, Quader H, Scherer GFE (2002) Molecular identification of cytosolic, patatin-related phospholipases a from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CP, Kim J, Lee J, Yoo SI, Bae W, Geem KR, Yu J, Jang I, Jo IH, Cho H, Shim D, Ryu H (2021) Gibberellin signaling promotes the secondary growth of storage roots in Panax ginseng. Int J Mol Sci 22:8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JH, Nguyen NQ, Legeret B, Beisson F, Kim YJ, Sim HJ, Lee OR (2020) Phospholipase pPLAIII alpha increases germination rate and resistance to turnip crinkle virus when overexpressed. Plant Physiol 184:1482–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JH, Seo HS, Widiez T, Lee OR (2023) Loss-of-function of gynoecium-expressed phospholipase pPLAII? Triggers maternal haploid induction in Arabidopsis. New Phytol 238:1813–1824

    Article  CAS  PubMed  Google Scholar 

  • Jeong HH, Kim YC, Lee JH (2022) Identification and functional characterization of TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factor genes in Pak-choi (Brassicarapa ssp. chinensis) (vol 16, 309, 2022). Plant Biotechnol Reports 16:805–805

    Article  CAS  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(105):109

    Google Scholar 

  • Kim H, Kim ST, Ryu J, Choi MK, Kweon J, Kang BC, Ahn HM, Bae S, Kim J, Kim JS, Kim SG (2016) A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR–Cas system. J Integr Plant Biol 58:705–712

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Ahn WS, Cha A, Jie EY, Kim SW, Hwang BH, Lee S (2022) Development of glucoraphanin-rich broccoli (Brassica oleracea var. italica) by CRISPR/Cas9-mediated DNA-free BolMYB28 editing. Plant Biotechnol Rep 16:123–132

    Article  CAS  Google Scholar 

  • Lee YR, Siddique MI, Kim DS, Lee ES, Han K, Kim SG, Lee HE (2023) CRISPR/Cas9-mediated gene editing to confer turnip mosaic virus (TuMV) resistance in Chinese cabbage (Brassica rapa). Hortic Res 10:uhad078

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CX, Li X, Meng DX, Zhong Y, Chen C, Dong X, Xu XW, Chen BJ, Li W, Li L, Tian XL, Zhao HM, Song WB, Luo HS, Zhang QH, Lai JS, Jin WW, Yan JB, Chen SJ (2017) A 4-bp Insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant 10:520–522

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Yang J, Zhu ZD, Huang LJ, Ali A, Javed HH (2021) Genetic characteristics and ploidy trigger the high inducibility of double haploid (DH) inducer in Brassica napus. BMC Plant Biol 21:538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma CF, Liu MC, Li QF, Si J, Ren XS, Song HY (2019) Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Hortic Plant J 5:164–169

    Article  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu MPA, Maruthachalam R, Bondada R, Kuppu S, Tan EH, Britt A, Chan SWL, Comai L (2021) Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Sci Adv 7:eabk1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615-U180

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Kwong PN, Menorca RMG, Valencia JT, Ramahi JS, Stewart JL, Tran RK, Sundaresan V, Comai L, Chan SWL (2010) The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186:461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I (2015) Role of phospholipid signalling in plant environmental responses. Environ Exp Bot 114:129–143

    Article  CAS  Google Scholar 

  • Scherer GFE, Ryu SB, Wang XM, Matos AR, Heitz T (2010) Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci 15:693–700

    Article  CAS  PubMed  Google Scholar 

  • Segui-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Shin YH, Park YD (2022) CRISPR/Cas9-mediated mutagenesis of BrLEAFY Delays the bolting time in chinese cabbage (Brassica rapa L. ssp. pekinensis). Int J Mol Sci 24:541

    Article  PubMed  PubMed Central  Google Scholar 

  • WangKimLeeKim E-JY-CJ-HJ-K (2021) Identification of a nuclear localization signal mediating the nuclear import of Arabidopsis splicing factor1. Plant Biotechnol Rep 15:775–781

    Article  Google Scholar 

  • Yang WY, Devaiah SP, Pan XQ, Isaac G, Welti R, Wang XM (2007) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Bragg J, Aucar-Yamato S, Chanbusarakum L, Dluge K, Cheng P, Blumwald E, Gu Y, Tobias CM (2023) Haploidy and aneuploidy in switchgrass mediated by misexpression of CENH3. Plant Genome 16:e20209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. B. Choi, H. H. Jeong, and M. Chen for their supporting tissue culture experiment. We also thank Dr. H. Ryu for kindly providing research material (a RFP-tagged AtARR2 marker) and Ms. Y. Y. Choi, Center for University-wide Research Facilities (CURF) at Jeonbuk National University, for confocal microscopic observations. This work was supported by grants from the Basic Science Research Program of the National Research Foundation (NRF) (2020R1I1A1A01072914 to Y.-C. Kim and 2019R1A2C1004140 to O. R. Lee) and the Rural Development Administration (RDA) (RS-2024-00322297 to J. H. Lee), Republic of Korea. This work was also supported by research funds of Jeonbuk National University in 2022 (to J. H. Lee) and BK21 FOUR Program by Jeonbuk National University Research Grant (to M. P. Thu).

Author information

Authors and Affiliations

Authors

Contributions

YCK and JHL conceived and designed the study; MPT performed the majority of research with the help of FMR, YJY, and JHJ; YCK, ORL, and JHL completed the final manuscript; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jeong Hwan Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 568 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YC., Thu, M.P., Rahman, F.M. et al. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated mutagenesis of haploid inducer genes in Pak-choi plants (Brassica rapa ssp. chinensis). Plant Biotechnol Rep 18, 263–273 (2024). https://doi.org/10.1007/s11816-024-00898-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-024-00898-1

Keywords

Navigation