Skip to main content
Log in

Changes in the toxicity of procymidone and its metabolite during the photohydrolysis process and the effect of the presence of microplastics

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Procymidone (PCM), an agricultural fungicide, is attracting attention because it has been detected in all ecosystems, including aquatic environments. This study explored changes in the behavior and toxicity of PCM in water under the influence of photolysis and microplastics (MPs) coexistence. Hydrolysis of PCM was evaluated and UV-A and UV-C lamps were used as light sources for the photodegradation experiments. The Microtox® assay was used to evaluate changes in toxicity during the photodegradation and after sorption on MPs of low-density polyethylene (LDPE) and polyvinyl chloride (PVC) films. The appearance of 3,5-dichloroaniline (DCA), a major metabolite of PCM that is more toxic than its parent compound in water, was confirmed. Both PCM and DCA showed sufficient molar extinction coefficients to be photolyzed under UV-C irradiation (εPCM=10,300 M−1 cm−1 and εDCA=2,400 M−1 cm−1); however, the presence of natural organic matter negatively affected their photodegradation. PVC showed a better sorption potential for PCM and DCA than for LDPE. The higher sorption by PVC significantly reduced the toxic effect of DCA from an average value of 79% to 60% and increased the EC50 value from 30.4% to 47.6%. These results offer insights into controlling toxic micropollutants, including fungicides, in aquatic environments and water treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Celeiro, L. Vazquez, P. Nurerk, A. Kabir, K. G. Furton, T. Dagnac and M. Llompart, J. Sep. Sci., 43, 1817 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. A. Sarker, S. H. Lee, S. Y. Kwak, R. Nandi and J. E. Kim, Ecotoxicol. Environ. Saf., 196, 110561 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. A. Rifai, Y. Souissi, C. Genty, C. Clavaguera, S. Bourcier, F. Jaber and S. Bouchonnet, Rapid Commun. Mass Spectrom., 27, 1505 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Wu, Z. Zuo, M. Chen, Y. Zhou, Q. Yang, S. Zhuang and C. Wang, Chemosphere, 193, 928 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Fu, X. Dou, Q. Lu, J. Qin, J. Luo and M. Yang, Sci. Total Environ., 714, 136718 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. S. Zheng, B. Chen, X. Qiu, M. Chen, Z. Ma and X. Yu, Chemosphere, 144, 1177 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. J. M. Dabrowski, S. K. C. Peall, A. J. Reinecke, M. Liess and R. Schulz, Water, Air, Soil Pollut., 135, 265 (2002).

    Article  CAS  Google Scholar 

  8. J.-B. Lee, H.-Y. Sohn, K.-S. Shin, J.-S. Kim, M.-S. Jo, C.-P. Jeon, J.-O. Jang, J.-E. Kim and G.-S. Kwon, J. Microbiol. Biotechnol., 18, 343 (2008).

    CAS  PubMed  Google Scholar 

  9. D. Edwards, Report of the Food Quality Protection Act (FQPA) Tolerance Reassessment Progress and Risk Management Decision (TRED) for Procymidone, United State. Environtment protection agency (2005).

  10. C. R. Racine, T. Ferguson, D. Preston, D. Ward, J. Ball, D. Anestis, M. Valentovic and G. O. Rankin, Toxicology, 341–343, 47 (2016).

    Article  PubMed  Google Scholar 

  11. J. Yang, Z. Wang, G. Lv, W. Liu, Y. Wang, X. Sun and J. Gao, Ecotoxicol. Environ. Saf., 197, 110644 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. L. Carena, D. Fabbri, M. Passananti, M. Minella, M. Pazzi and D. Vione, Chemosphere, 246, 125705 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Cao, W. Qiu, J. Li, Y. Zhao, J. Jiang and S. Pang, Water Res., 189, 116625 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. H. D. Burrows, J. Santaballa and S. Steenken, J. Photochem. Photobiol. B: Biol., 67, 71 (2002).

    Article  CAS  Google Scholar 

  15. S. Luo, Z. Wei, R. Spinney, Z. Zhang, D. D. Dionysiou, L. Gao, L. Chai, D. Wang and R. Xiao, J. Hazard. Mater., 343, 132 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. K. Hustert and P. N. Moza, Chemosphere, 35, 33 (1997).

    Article  CAS  Google Scholar 

  17. C. K. Remucal, Environ. Sci. Processes Impacts, 16, 628 (2014).

    Article  CAS  Google Scholar 

  18. J. Hur and E. H. Jho, J. Korean Soc. Environ. Eng., 43, 299 (2021).

    Article  Google Scholar 

  19. Y. Wang, Y. Yang, X. Liu, J. Zhao, R. Liu and B. Xing, Environ. Sci. Technol., 55, 15579 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. T. Wang, C. Yu, Q. Chu, F. Wang, T. Lan and J. Wang, Chemosphere, 244, 125491 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. H. Li, F. Wang, J. Li, S. Deng and S. Zhang, Chemosphere, 264, 128556 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. S. Fang, W. Yu, C. Li, Y. Liu, J. Qiu and F. Kong, Sci. Total Environ., 691, 1119 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. C. G. Lee, H. Javed, D. Zhang, J. H. Kim, P. Westerhoff, Q. Li and P. J. J. Alvarez, Environ. Sci. Technol., 52, 4285 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Y.-J. Lee, C.-G. Lee, S.-J. Park, J.-K. Moon and P. J. J. Alvarez, Chem. Eng. J., 428, 132444 (2022).

    Article  CAS  Google Scholar 

  25. J. C. Villedieu, A. de Savignac and J. P. Calmon, J. Agric. Food Chem., 43, 1948 (1995).

    Article  CAS  Google Scholar 

  26. T. Alapi and A. Dombi, J. Photochem. Photobiol. A: Chem., 188, 409 (2007).

    Article  CAS  Google Scholar 

  27. J. C. Carlson, M. I. Stefan, J. M. Parnis and C. D. Metcalfe, Water Res., 84, 350 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. S. Li and J. Hu, J. Hazard. Mater., 318, 134 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. S. Zhang, L. Li, G. Meng, X. Zhang, L. Hou, X. Hua and M. Wang, Sustainability, 13, 6712 (2021).

    Article  CAS  Google Scholar 

  30. Q. Lai, X. Sun, L. Li, D. Li, M. Wang and H. Shi, Chemosphere, 272, 129577 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. S. Bejgarn, M. MacLeod, C. Bogdal and M. Breitholtz, Chemosphere, 132, 114 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. H.-X. Li, G. J. Getzinger, P. L. Ferguson, B. Orihuela, M. Zhu and D. Rittschof, Environ. Sci. Technol., 50, 924 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. H. Lee, S.-J. Im, Y. Kim, G. Lee and A. Jang, Environ. Pollut., 280, 116878 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF-2021R1A2C4001746). This work was also carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01571602), Rural Development Administration, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Gu Lee or Eun Hea Jho.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1231_MOESM1_ESM.pdf

Changes in the toxicity of procymidone and its metabolite during the photohydrolysis process and the effect of the presence of microplastics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Yang, J.W., Choi, B. et al. Changes in the toxicity of procymidone and its metabolite during the photohydrolysis process and the effect of the presence of microplastics. Korean J. Chem. Eng. 40, 612–617 (2023). https://doi.org/10.1007/s11814-022-1231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1231-z

Keywords

Navigation